Dynamic Connectivity Problem: Online pakhomovee

Compiled: 25 июля 2023 г.

1 Euler Tour Tree

1.1 Структура

Мы хотим научиться решать следующую задачу за $O(n \log n)$:

Задача 1.

Дан лес на n вершинах. Нужно научиться обрабатывать запросы:

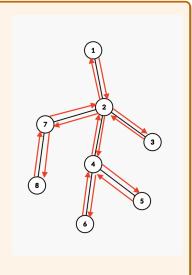
- Добавить ребро (u, v), u и v находятся в разных компонентах связности
- Удалить ребро (u, v)
- Сказать, лежат ли u и v в одной компоненте связности

Proposition 1.1

Рассмотрим любой эйлеров обход дерева, выпишем рёбра в порядке перехода по $_{\rm HIM}$

Сохраним ребра в декартовом дереве. Для каждой вершины сохраним out(v) — указатель на ребро, которое выходит из неё, in(v) — указатель на ребро, которое входит в неё.

- Проверка на связность: пусть r(e) корень ДД, в котором лежит ребро e. Проверим, что r(in(u)) == r(in(v)).
- Добавление ребра: введём функцию $make_root(v)$, которая сделает вершину v коренем её дерева. Для этого циклически сдвинем ДД, чтобы in(v) было первым ребром в массиве. Теперь выполним $make_root(u), make_root(v),$ после чего добавим в конец ДД вершины u ребро (u,v), ДД вершины v, ребро (v,u).
- Удаление ребра: для каждого ребра сохраним обратное ему ребро back(e). Сделаем ребро e первым в ДД. Найдем индекс ребра back(e) в ДД (для этого нужно для каждой вершине в ДД хранить её предка). Отрежем всё левее back(e), удалим рёбра e и back(e). Структура перестроилась корректно.



1.2 Другие задачи

Задача 2.

Дан лес на n вершинах. Нужно научиться обрабатывать запросы:

- Добавить ребро (u, v), u и v находятся в разных компонентах связности
- Удалить ребро (u, v)
- Найти XOR чисел на ребрах на пути (u, v)

Для этого найдем префиксный XOR до in(u) и до in(v). Тогда ответ равен XOR этих чисел.

Дано дерево на n вершинах, корень постоянный. Нужно научиться обрабатывать запросы:

- Подвесить вершину u к вершине v, вершина u до этого не встречалась
- Удалить ребро (u, v), вершина v является листом
- Найти lca(u, v)

Если мы подвесили дерево, то у каждого ребра есть направление — «вниз» или «вверх». На ребрах «вниз» поставим число 1, а на ребрах вверх число -1. Достаточно просто вырезать отрезок от in(u) до in(v) и на нём найти вершину ДД с наименьшей префиксной суммой.

2 Dynamic Connectivity Problem

2.1 Постановка задачи

Задача 4.

Нужно научиться обрабатывать запросы:

- Добавить ребро (u, v) в граф
- Удалить ребро (u, v) из графа
- Проверить лежат ли u и v в одной компоненте связности

При этом граф в каждый момент может быть произвольным.

2.2 Алгоритм

Proposition 2.1

Введём веса для каждого ребра (граф невзвешенный, это веса, которые мы будем использовать в ходе алгоритма). Пусть l_e — вес ребра $e, 0 \le l \le \lceil \log_2 n \rceil$.

Пусть F_i — максимальный остовный лес на рёбрах веса $\leq i$. Мы будем поддерживать следующий инвариант:

- 1. $F_{\lceil \log_2 n \rceil} \subseteq F_{\lceil \log_2 n \rceil 1} \subseteq \ldots \subseteq F_1 \subseteq F_0$.
- 2. В F_i все компоненты связности имеют размер $\leq \frac{n}{2^i}$.

Каждое остовное дерево будем хранить в ЕТТ. Все ребра веса i, которые не лежат в F_i сохраним в g[i] Тогда проверить связанные ли u и v можно за одну проверку их связности в F_0 .

Для того, чтобы добавить ребро (u, v) сделаем следующее:

- Если u и v не связаны в F_0 , то добавим ребро (u,v) в F_0 , назначив ему вес 0
- Иначе добавим ребро в g[0][v] и g[0][u].

Инвариант не испортился.

Для того, чтобы удалить ребро (u, v):

- Если $(u, v) \notin F_0$, то просто удалим (u, v) из списка ребер.
- Иначе пусть level[(u,v)] = L. Тогда $(u,v) \in F_0, F_1, \ldots, F_L$. Заметим, что, так как $F_i \subseteq F_{i+1}$, компоненты T_u и T_v , образовавшиеся при удалении в F_0, \ldots, F_L ребра (u,v) не соединены ни в одном F_i . Отсюда же следуем, что ребра замены нет в E_k для k > L, где E_k множество ребер веса k. Для определенности скажем $|T_u| \le |T_v|$, $|T_u| + |T_v| \le \frac{n}{2^L}$ по инварианту, так как до удаления они были одной компонентой. Значит, $T_u \le \frac{n}{2^{L+1}}$. Значит, можно добавить все рёбра веса L из T_u в F_{L+1} , увеличить их вес на 1. Инвариант после такого изменения сохраняется. После этого рассмотрим все рёбра веса L, инцидентные T_u , не лежащие в T_u , которые мы еще не смотрели (то есть их вес равен текущему L). Есть 2 случая:
 - 1. Второй конец ребра лежит в T_v . В этом случае добавим это ребро в F_L, F_{L-1}, \dots, F_0 . На этом закончим выполнение del_edge .
 - 2. Иначе оба конца ребра лежат в T_u (так как иначе оно лежало бы в T_u , ведь до удаления (u,v) T_u и T_v составляли единую полную (максимальную по включению) компоненту связности). Увеличим l_e на 1 (в F_{L+1} оно соединяет вершины из одной компоненты, так как мы перенесли T_u в F_{L+1}). Если на уровен L мы не нашли замену, то перейдем на уровень L-1 и поищем её там. Если замены нет и в F_0 , то замены просто нет.

2.3 Реализация

Чтобы не умереть во время реализации алгоритма:

- 1. Не забываем g[level][vertex] для рёбер не из F_{level} , смежных с vertex
- 2. Для каждой вершины остовного леса храним флаг: есть ли ребро из неё, не лежащее в лесу. Для этого

фиксируем ребро-представитель из ЕТТ для каждой вершины. Модно, например, сделать петлю.

2.4 Асимптотика

По алгоритму видно, что вес ребра никогда не превосходит $\lceil \log_2 n \rceil$, а каждое обращение к ребру меняет его вес на 1, поэтому всего будет $O(m \log_2 n)$ изменений, каждое из которых обращается к ЕТТ, откуда итоговая асимптотика получается равной $O(m \log_2^2 n)$.

3 Decremental Minimum Spanning Forests

Мы хотим научиться решать следующую задачу:

Задача 5.

Дан взвешенный граф на n вершинах. Нужно научиться обрабатывать следующие запросы:

- Удалить ребро (u, v)
- Найти вес минимального остовного дерева компоненты связности, в которой лежит вершина u

Proposition 3.1

Обозначим за w(e) вес ребра в графе, за l(e) уровень ребра из предыдущего пункта.

Предыдущий алгоритм несложно поменять для решения этой задачи:

- 1. Изначально F_0 минимальный остовный лес графа
- 2. При просмотре рёбер, которые инцидентны T_u , но не лежат в T_u , будем идти в порядке возрастания их весов (w(e)) (мы всё еще выбираем их по одному и завершаемся, если нашли замену).

Theorem 3.2

Этих изменений достаточно для решения DMSF.

Доказательство. К нашему инварианту из предыдущего пункта добавим также утверждение: любой цикл C графа имеет ребро не из F_i , что $w(e) = \max_{f \in C} w(f)$ и $l(e) = \min_{f \in C} l(f)$

Докажем, что тогда мы будем находить ребро-замену минимального возможного веса.

Lemma 3.3 Пусть F — минимальный остовный лес и выполняется наш инвариант. Тогда для любого ребра e из леса самое легкое его ребро-замена лежит на максимальном уровне.

Доказательство. Пусть e_1 и e_2 — ребра замены для e. Обозначим за C_i цикл, который возникнет, если добавить в дерево ребро e_i . $e_i \in C_i$. Пусть $w(e_1) < w(e_2)$. Достаточно показать $l(e_1) \ge l(e_2)$.

Рассмотрим цикл $C = (C_1 \cup C_2) \setminus (C_1 \cap C_2)$. По нашему инварианту e_i — наиболее тяжелое ребро не из F на C_i . Значит, e_2 — уникальное самое тяжелое ребро на C не из F. То есть e_2 имеет наименьшее l(e) на C. В частности, $l(e_1) \geq l(e_2)$.

Очевидно, что наш алгоритм сохраняет инварианты (i) и (ii) из DCP. Докажем, что он также сохраняет и новый инвариант (iii).

Lemma 3.4 — Алгоритм сохраняет: любой цикл C графа имеет ребро не из F_i , что $w(e) = \max_{f \in C} w(f)$ и $l(e) = \min_{f \in C} l(f)$

Доказательство. Изначально (ііі) выполнено, так как все ребра на уровне 0. При простом удалении ребра всё сохраняется: новое множество циклов будет подмножеством старого множества.

Нужно доказать, что во время поиска замены удаленному ребру мы ничего не портим, когда увеличиваем уровень просмотренного ребра / добавляем его в остовный лес. Заметим, что можно смотреть только на ребра, являющие самыми низкими по уровню и в то же время самыми тяжелыми по весу в своём цикле, так как иначе инвариант нарушиться не может. Докажем, что:

- 1. все рёбра из C смежные с T_u имеют уровень > l(e)
- 2. используя (1) покажем, что C не сможет покинуть T_v

Из (2) станет ясно, что e не будет ребром-заменой. Из (1) и (2) мы поймем, что e имеет уровень строго меньший уровней всех ребер в C, поэтому e не сломает ничего, если повысит свой уровень.

Итак, докажем (1): Пусть i=l(e). Пусть мы сейчас будем смотреть на e в поиске замены. Тогда все рёбра из T_u имеют уровень >i (мы их до этого повысили). Также любое ребро инцидентное T_u , которое легче e имеет уровень >i, так как мы посмотрели его раньше. Более того, так как e — единственное самое «низкое» ребро на C ребро наибольшего веса не из леса, любое ребро такого же веса будет иметь строго больший уровень. ч.т.д;

Докажем (2): пусть C покинет T_v . Тогда есть хотя бы 2 ребра в C, которые покидают T_v , одно из которых не e. Назовем это ребро f. Если $l(f) \ge i$, то f является кандидатом на замену, но по (1) нет ребра-замены на уровне > i, то есть $l(f) \le i$, значит l(f) = i, что противоречит (1). Значит, (iii) не нарушается.

Инварианты (i), (ii) и (iii) сохраняются, поэтому, если начать с минимального остовного леса F, по 3.3 при удалении ребра, оно должно быть заменено самым лёгким вариантом замены в установленном порядке перебора, поэтому остовный лес останется корректным.

Итоговая реализация алгоритма работает за $O(m \log_2^2 n)$