Задача А. Обратный элемент по модулю

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Обратным элементом к n в кольце вычетов по модулю m называется такой элемент x, что выполняется равенство $nx \equiv 1 \pmod{m}$.

Формат входных данных

Входной файл содержит два целых числа n и m $(1 \le n, m \le 10^9)$.

Формат выходных данных

В выходной файл выведите обратный элемент к n в кольце вычетов по модулю m. Если этого элемента не существует, то выведите -1.

stdin	stdout
1 2	1
1 5	1
2 4	-1

Задача В. Диофантово уравнение

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайта

Даны натуральные числа a, b и c. Решите в целых числах уравнение ax+by=c. Среди множества решений следует выбрать такое, где x имеет наименьшее неотрицательное значение.

Формат входных данных

Входной файл содержит три целых числа a и b и c $(1 \le a, b, c \le 10^9)$.

Формат выходных данных

В выходной файл выведите искомые x и y через пробел. Если решения не существует, выведите одну строку «Impossible».

stdin	stdout
1 2 3	1 1

Задача С. Переливание

Имя входного файла: flow.in
Имя выходного файла: flow.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

На досуге вы любите почитать сборники занимательных задач по математике. Недавно вы наткнулись в одном из таких сборников на следующую задачу:

Есть бесконечный резервуар с водой и два пустых сосуда объёмом 5 и 12 литров. Можно: наливать воду из резервуара в любой сосуд до его заполнения, переливать воду из одного сосуда в другой до заполнения второго или опустошения первого (смотря что будет раньше) и выливать воду из сосуда на землю до полного опустошения сосуда. Как таким образом можно отмерить 3 литра?

Вы решили написать программу, которая будет решать подобные задачи для произвольных объёмов сосудов.

Формат входных данных

Во входном файле находятся три целых числа — V_1 , V_2 и V — объёмы двух сосудов и объем воды, который нужно отмерить. Гарантируется, что $1 \le V_1, V_2 \le 32767$ и $0 \le V \le \max(V_1, V_2)$.

Формат выходных данных

В первую строку выходного файла выведите одно число — количество действий в вашем решении. Далее выведите соответствующее количество строк, описывающих действия в вашем решении. Для каждого действия выведите два числа:

- Если это действие переливание из одного сосуда в другой, то первое число должно быть номером сосуда, откуда надо переливать воду, а второе номером сосуда, куда переливать;
- Если это действие набор воды из резервуара, то первое число должно быть нулём, а второе номером сосуда, куда наливать;
- Если это действие выливание воды «на землю», то первое число должно быть номером сосуда, а второе нулём.

После выполнения всех операций хотя бы в одном сосуде должна находиться вода в объёме V.

Если существует несколько решений, то вы можете вывести любое. Ваше решение не обязано быть оптимальным, единственное ограничение—размер выходного файла не должен превосходить 3 Мб.

Если решений не существует, выведите одно число -1.

flow.in	flow.out
120 5 5	2
	0 2
	2 1
32001 4 32001	1
	0 1

Задача D. Китайская теорема

Имя входного файла: chine.in
Имя выходного файла: chine.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайта

Решите в целых числах систему уравнений

$$\begin{cases} x \equiv a \pmod{n} \\ x \equiv b \pmod{m}, \end{cases}$$

где n и m взаимно просты. Среди решений следует выбрать наименьшее неотрицательное число.

Формат входных данных

Первая строка входных данных содержит число $N,~1\leqslant N\leqslant 10^4,$ — количество тестов, для которых нужно решить задачу.

Следующие N строк содержат по четыре целых числа a_i, b_i, n_i и m_i $(1 \leqslant n_i, m_i \leqslant 10^6, 0 \leqslant a_i < n_i, 0 \leqslant b_i < m_i)$.

Формат выходных данных

Для каждого из тестов выведите искомое наименьшее неотрицательное число x_i .

chine.in	chine.out
2	3
1 0 2 3	38
3 2 5 9	

Задача Е. Система линейных сравнений

Имя входного файла: chinese.in Имя выходного файла: chinese.out Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

Дана система из двух линейных сравнений:

$$\begin{cases} x \equiv a \pmod{n}, \\ x \equiv b \pmod{m}; \end{cases}$$

где числа n и m не обязательно взаимно простые. Решите эту систему или определите, что она не имеет решений.

Формат входных данных

В первой строке входного файла записано единственное число $1 \leqslant t \leqslant 100\,000$. В следующих t строках содержатся по четыре целых числа a, b, n, m, задающих одну систему сравнений. Все числа не превосходят по модулю $10^4, n > 1, m > 1$.

Формат выходных данных

Программа должна вывести t строк, по одной на каждую систему.

В случае, если система не имеет решений, выведите строку "NO".

В случае, если решение есть, то необходимо вывести слово "YES" и два таких числа x_0 и p, $0 \le x < p$, такие, что множество чисел $x = x_0 + kp$, где k — произвольное целое число является решением данной системы.

chinese.in	chinese.out
3	YES 38 45
3 2 5 9	YES 1 45
1 1 5 9	NO
7 13 20 24	

Задача F. Вычислите функции

Имя входного файла: func.in
Имя выходного файла: func.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дано число N. Требуется вычислить следующие функции для него:

arphi(N)= количество взаимно простых с N чисел среди $1,2,\dots,N$ $\tau(N)=$ количество делителей числа N $\sigma(N)=$ сумма всех делителей числа N

Формат входных данных

Во входном файле содержится единственное число $1 \leqslant N \leqslant 10^9$.

Формат выходных данных

В единственную строку выходного файла выведите через пробел три числа — значения $\varphi(N),$ $\tau(N),$ $\sigma(N).$

func.in	func.out
2	1 2 3

Задача G. Пётя

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 4.5 секунд Ограничение по памяти: 512 мегабайт

Петя хочет посчитать значения $\phi(1), \phi(2), \dots, \phi(n)$. И вы должны ему помочь в этом.

Он опаздывает на поезд в Петербург, так что лимит по времени в этой задаче поставлен примерно впритык. Также в этой задаче маленький лимит по памяти, потому что ноутбук Петра очень старый и не может выделить на решение задачи больше чем данное количество памяти.

Формат входных данных

Число n $(1 \le n \le 10^8)$.

Формат выходных данных

Для каждого числа от 1 до n требуется посчитать функцию Эйлера от него. Так как чисел очень много, сначала выведите сумму функций Эйлера для первых 100 чисел, потом для вторых 100 чисел, потом для третьих 100 чисел и так далее. Если n не делится на 100, последнее из выведенных вами чисел будет состоять из суммы меньше, чем 100 слагаемых.

стандартный ввод	стандартный вывод
10	32
200	3044 9188