Теорсеминар

Есть сложные задачи, есть простые, задачи неупорядочены по сложностям.

1. Минимальный *k*-диаметр

Даны $n \le 50$ точек на плоскости. Выбрать k точек. Минимизировать диаметр множества выбранных точек.

2. Игра на массиве

Дан массив длины $2n \leq 10^5$. За ход можно откушать одно число слева или справа. Играют двое. У кого больше сумма, тот и победил. За кого из игроков есть беспроигрышная стратегия?

3. Игра на графе

Дан изначально пустой граф. Двое добавляют в граф рёбра по очереди. После чьего хода появился нечётный цикл, тот редиска. Кто выиграет при оптимальной игре обоих? (a) $n \mod 2 = 1$, (б) $n \mod 4 = 0$, (в) $n \mod 4 = 2$.

4. Привет от Майка

Есть окружность. На окружности n точек. Выбрать k точек так, чтобы многоугольник на них, как на вершинах содержал центр окружности и имел максимальную площадь. $\mathcal{O}(n^2 \log n)$ или быстрее. Точно можно за $\mathcal{O}(n^2 \log k)$.

5. Подпоследовательности

Дан массив, выбрать две непересекающихся возрастающих подпоследовательности максимальной (а) суммарной длины для $n \leq 50\,000$, (б) суммы элементов за $\mathcal{O}(n^2)$.

6. Башня из коробок

Даны $n \leq 10^6$ коробок. У каждой есть масса m_i и прочность s_i . Выбрать максимальное число коробок так, чтобы из них можно было выстроить вертикальную башенку, в башенке на коробке i сверху можно ставить коробки суммарной массы не более s_i .

(a) Решить. (б) Доказать корректность решения.

7. Выполнить дерево

Дано $n \leq 10^5$ работ. У каждой есть время выполнения $t_i > 0$, и штраф $f_i > 0$. Если мы закончим выполнять i-ую работу в момент времени T_i , должны заплатить $T_i f_i$. (a) Выбрать порядок выполнения работ, минимизировать $\sum_i T_i f_i$, (б) Тоже самое, но есть зависимости, чтобы начать делать работу i, нужно сперва закончить работу p_i .

8. Хеш множества

Научитесь быстро поддерживать 4 операции: добавить элемент в множество, удалить элемент из множества, += к множеству (первые три операции порождают новые множества), сравнить два любых старых множества на равенство.

9. Красно-синие точки

Даны n=500 красных точек, 500 синих точей. Для каждого из n^3 красных треугольников насчитайте число синих точек внутри.

10. Точки в полуплоскости

Даны $n \leqslant 2\,000$ точек на плоскости. Online поступают $q \leqslant 2\,000\,000$ запросов вида «сколько из данных точек лежат в полуплоскости $ax + by + c \leqslant 0$?»

11. Расстояние Левенштейна

Даны две строки длины до 10^6 , найти их расстояние Левенштейна, или сказать, что оно > 100.

12. Длинные вектора

Дано $2n \leqslant 10^5$ векторов на плоскости. Двое играют в игру, за ход нужно забрать себе ровно один вектор, в конце сравнивают длины сумм векторов. У кого больше, тот и победит. Придумайте и реализуйте стратегию. (a) \sum исходных векторов = (0,0), (б) $\forall \sum$ исходных векторов.

13. Частное пар

Даны n пар $(a_i > 0, b_i > 0)$, выбрать k пар так, чтобы минимизировать $\frac{\sum a_i}{\sum b_i} \to \min$.

14. Произведение пар

Даны n пар $(a_i > 0, b_i > 0)$, выбрать k пар так, чтобы минимизировать $(\sum a_i)(\sum b_i) \to \min$.

15. Трудное Произведение пар

Даны n пар $(a_i > 0, b_i > 0)$, выбрать k пар так, чтобы максимизировать $(\sum a_i)(\sum b_i) \to \max$. Доказать, что задача NP-трудна.

16. Палиндромы

Представить строку длины $n\leqslant 10^6$ в виде конкатенации трёх палиндромов.

Разбор задач

1. Минимальный *k*-диаметр

Переберём пару точек A, B, которые образуют диаметр d=|AB|. Остальные k-2 точки должны лежать в пересечении P двух кругов радиуса d, AB разбивает P на две половинки \Rightarrow пары точек из P, между которыми расстояние больше d образуют двудольный граф, в котором можно найти максимальное независимое множество.

2. Игра на массиве

Раскрасим шахматно массив 2 цвета. Если n чётно, первый может себе гарантировать сумму любой из двух половинок. Если n нечётно, после хода первого второй может гарантировать себе сумму любой из двух половинок, но не более.

3. Игра на графе

Посмотрим на последний проигрывающий ход. Перед ним граф двудольный. a+b=n. Если n нечётно, $a\cdot b$ обязательно чётно. Если n кратно двум, и первый, и второй могут гарантировать a=b, при $n\equiv 0 \bmod 4$ получаем $a\cdot b$ чётно, второй выиграет, иначе нечётно, первый выиграет.

4. Привет от Майка

Первый вариант решения: dp по подотрезкам maxArea[l,r,k], переход в $[l,m,\frac{k}{2}]$ и $[m,r,\frac{k}{2}]$. Состояний $\mathcal{O}(n^2\log k)$, переходы отработают за $\mathcal{O}(n^2\log k)$ потому что Кнут.

Второй вариант решения. Тыкаем $\frac{n}{k}$ случайных точек, чтобы угадать какую-то из k. Для каждой пишем динамику [n,k] – до куда дошли, сколько точек взяли. Переходы разделяйкой. $\frac{n}{k} \cdot nk \cdot \log n$.

5. Подпоследовательности

Mincost k-flow, k=2, $\mathcal{O}(n^2)$. Граф из n вершины и n^2 рёбер \Rightarrow Дейкстра.

Можно сделать $\mathcal{O}(n \log n)$ рёбер, тогда Дейкстра работает за $\mathcal{O}(n \log^2 n)$: Нам нужны рёбра $(i, a_i) \to (j, a_j)$, построим дерево mergesort и будем проводить ребра (1) в вершины этого дерево, а из неё в рёбра (2) каждый из листьев рёбер и типа (1), и типа (2) по $\mathcal{O}(n \log n)$.

Жадное Решение для $n = 50\,000$ и k последовательностей за $\mathcal{O}(nk\log n)$. Вспомним, как мы решаем задачу за $\mathcal{O}(n\log n)$ для k = 1. Динамика

 $tend[\mathtt{len}]$ — минимальный конец последовательности длины len.

Теперь храним k последовательностей $\operatorname{end}_i[\operatorname{len}]$ для i=1..k.

Причём последовательности упорядочены по длине, end_1 – самая длинная.

Приходит новый элемент a_i .

Найдём бинпоиском его позицию p в end_1 : $\operatorname{end}_1[p-1] < a_i \leqslant \operatorname{end}_1[p]$.

Заменяем $end_1[p]$ на a_i . Получается, мы как бы вытолкнули из end_1 элемент $end_1[p]$.

Добавим его таким же образом в end₂. И так далее...

В итоге мы получим не последовательности, а какой-то мусор. Зато суммарная длина этого мусора в точности равна ответу на задачу. Без доказательства.

6. Башня из коробок

Сортируем по $s_i + m_i$ по возрастанию (строим сверху вниз), жадно пробуем брать в таком порядке. Если не можем очередную взять, то её берём, а вместо неё выкидываем коробку максимальной массы.

Доказательство: на каждом i-м шаге $\forall k$ верно, что префикс из k минимальных по массе коробок из выбранных — оптимальный ответ для [i,k], из первых i коробок выбрать k так, чтобы получилась корректная башня минимальной массы.

7. Выполнить дерево

Сортируем по частному. Чтобы обработать дерево, заметим, что как только можно выполнить оптимальную по частному работу, выгодно её сразу выполнить \Rightarrow как только выполним её отца p_i , выполним и её \Rightarrow смерджим их в СНМ в одну работу.

Решение: куча по частному + СНМ.

8. Хеш множества

Решение 1: $Hash(A) = (\sum_{a \in A} p^a) \mod m$.

Решение 2: персистентное декартово дерево от сортированного массива.

9. Красно-синие точки

Прекалк для каждой из n^2 красных трапеций. Треугольник = три трапеции.

10. Точки в полуплоскости

Есть n^2 различных по «порядку точек» направлений полуплоскости. Для каждого насчитаем персистентное декартово дерево, задающее порядок точек. Ответ на запрос = бинпоиск по массиву направлений + спуск по дереву. $\mathcal{O}(n^2 \log n + q \log n)$.

11. Расстояние Левенштейна

Считаем только кусок матрицы динамики [i,j], что $|i-j| \leqslant 100$.

12. Длинные вектора

Если сумма ноль, всегда ничья. Если сумма не ноль, то пусть она равна v, тогда перпендикулярные v направления у игроков в конце игры равны, а коллинеарную v часть они и будут максимизировать \Rightarrow выбираем вектор с максимальным скалярным произведением с v.

13. Частное пар

Бинпоиск по ответу. $\frac{\sum a_i}{\sum b_i} \geqslant x \Leftrightarrow \sum (a_i - xb_i) \geqslant 0$, выберем k максимальных за линию.

14. Произведение пар

Переберём направление суммы $(n^2$ различных штук), для каждого выберем k наименьших проекций. Один из n^2 вариантов окажется оптимальным.

15. Трудное Произведение пар

Решает subsetsum при $a_i + b_i = C$ и $k = \frac{n}{2}$.

16. Палиндромы

Утверждение: выгодно жадно взять или самый длинный слева, или самый длинный справа.