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l, Games and sets.

The games we shall consider have three characteristics. First, they are

played by two players, who move alternately according to certain rules.

Secondly, we require that in any game it happens, after a finite number of

moves, that the player whose turn it is has no legal move; and thirdly, we

adopt the convention that this player then is the loser. Of the several

possible ways to formaiize this concept the following is probably the simplest,

Definition. A game is a set.

A few words of explanation may be in order. If a, b are two positions

in a game, then we say that b is an pjation of a if, according to the

rules of the game, it is legal to move from a to b; it is assumed that

this only depends on a and b, and not on whose turn it is. We identify

each position with the seL of its options, and each game with its initial

Position; whence the definition. Notice that an element of a game, or of a

Position, is itself a position; hence all sets we are considering have only
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sets äs their elemerits, äs is usual in axiomatic set theories.

Thus, playing a set S ts done äs follows. The first player chooses

an element of S, say S!. Next the second player chooses an element, say

S", of S', whereafter the first player chooses an element of S". The

game continues in this way until one of the players - the loser1 - has to

choose an element from the enipty set; the axiom of regulärity (any non-empty

set χ contains an element disjoint from x) easily implies that this

Situation actually occurs after a finite immber of raoves.

Example. Let n be a natural number, i.e. a finite ordina]. If we adopt the

usual definition of ordinal numbers, which implies that

α = β: β is an ordinai < a| for every ordinal a,

then we have

n = JO, l, 2} ..., n-l}.

The game n can be played with n counters; moving just means taking away

an arbitrary non-empty subset of these counters. Notice that the first player

has an easy win by taking all counters, if n > 0; if n - 05 the first

player has rio move and loses. The reader may wish to anaiyze the game IN =

jn: n is a naturaJ number} (including zero).

Example. E, the compjex numbers. The toll owing annotated game will make the

rules clear.

White Black

1. 3 - 2 1 {3m}

2. 3K (22/7)̂

3. (-44Ζ,-14Ε)? {-44a}

4 -44 (0 44 )!f. wz .̂̂ , w^ ) ·

5. White resigns.

Comment. 1. White selected a coraplex number. Black knows that $ - 1R χ ]R

by a + bi = (a,b), and remembers Kura towslci' s definition oi an ordered pa'
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(x,y) = j{xj,{x,yij· Thus Black must choose an element of {ί3_(,(3_,-2_|Ι;
JR JR JR

The index IR here, and later ä}, 2Z and M, serve to distinguish between

real numbers, rational numbers, integers and natural numbers usually denoted

by the same symbol. Black's move leaves White a minimum of choice, but i t is

not the best one.

2. White has no choice. The "Dedekind cut" definition of IR which the

players agreed upon identifies a real number with the set of all strictly

larger rational numbers; so Black's move is legal.

3. A rational number is an equivalence class of pairs of integers (a,b),

with b Φ· 0; here (a,b) represents the rational number a/b. The question

mark denotes that White's move is a bad one.

4. The pair (a,b) of natural numbers represents the integer a-b.

Black's move is the only winning one.

5. White resigns, since he can choose between J O j and {θ , 44 } . In

both cases Black will reply by 0 , which is the empty set.

2. NLm addition and multiplication.

The _sum J + K of two games is recursively defined by

J + K = i j + K, J + k: j 6 J, k£K},

the recursion being justified by the axiom of regularity. Informally,

playing a sum of two games means selecting one of the component games,

making any legal move in that game, and not touching the other one. The next

player then also selects one of the component games - possibly Lhe same,

possibly not -, makes a legal move in it, and does not touch Lhe other game.

The game continues in this way until some player is unable to move in any of

the two components; by our convention, this player has then lost.

Notice that + is commutative and associative. We denote repeated sums

by J + K + ... + M; they are played in a similar manner.

Example. NIM is played with a finite number of heaps of counLers, Lhe i-th
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heap counting n. counters, say (0 < i <~ t). A legal move is to decreasel —.

strictly the number of counters in any heap. Clearly, this is the game

no + ni + ··· f nt-i

with n. äs in sectioii l, and + not to be confused with ordinary addition

of natural numbers.

The analysis of N1M is well-known, and due to C.L. Bouton (Nim, a gaine

with a complete mathematical theory, Arm. Math. 3_ (1902), 35-39). Let the

nim-sum a Θ b of two natural numbers a and b be obtained by writing

them down in binary and then adding them without carrying; e.g. 5 Θ 9 =

(101)2®(1001)2 = (1100)2 = 12. Clearly, (IN, Θ) Js an abelian group of

exponent two. Boutron showed thaL a winning strategy for NTM consists of

always moving to positions for wbich η,.Θη. ®. . „®n _ =0; such a move is

impossible if the position one has to move from already has this property,

but this is only natural, äs the Opponent may be following the strategy.

It was noted by R.P. Sprague (über malhematisehe Kampfspiele, Töhoku

Math. J. _41 (J935/6), 438-444) and P.M. Crundy (Mathematics and games,

Eureka _2 (J939), 6-8) that- tlie analysis applies to arbitrary sums, in the

f o 11ow i ng ma nne r.

Let the Grundy number G(J) of a game J be recursively defined by

G(J) = smallest ordinal not of the form G(j), with j € J.

The reader who dislikes ordinals may restricL to bounded games, i.e. games J

with the property that for some Eixed n f IN no chain χ t x _-, f ... f χ

ζ χ = J exists. For such games, and aJ i tlie i r positions, the Grundy numbers

are finite. Examples of bounded games are _shor_t games, i.e. finite sets all of

whose elements are shorc ("hereditariJy finite sets").

We have G(0) ~ 0, and more generally G(n) - n if n is a natural

number. Not Lee that

G(J) φ 0 «* ajPJ: G(j) - 0.
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From this it follows recursively that the first player has a winning strategy

in the game J if and only if G(J) ̂  0, and that, for such J, the choice

of an element j € J is a winning move if and only if G(j) = 0. Thus to win

a game one has to know the zeros of G. The result of Sprague and Grundy implies

that the Grundy number of the sum of two games only depends on the Grundy numbers

of the components:

Sum theorem. G(J + K) = G(J) Θ G(K).

Here Θ is defined for ordinals äs for natural numbers: write each of the two

ordinals to be nim-added äs a strictly decreasing sum of ordinals of the form

2 , delete the terms occurring in both expressions, and add the remaining

terms in decreasing order. The class On of ordinal numbers with the Operation

Θ satisfies the group axioms, except that the underlying domain is no set.

Following Conway, we say that (On, 0) is a Group. The exponent is again two.

Exercise. Determine the unique winning move in the game I N + Z + Q + H + I ,

the conventions being äs in section 1.

The proof of the sum theorem rnay be left to the reader. The essential

property of θ which one needs is that for any three ordinals α, β, γ with

γ <" a Φ β there exists a' < a with a ' Θ β = γ or ß ' < ß with a θ β1 = γ.

Since for a' ^ a, β' ̂  β one certainly has α ' Θ β ^ α θ β ^ α θ β ' , it

follows that

α θ β is the smallest ordinal number different from all α1 θ β

(2.1)
with a' < (l and from all α θ β' with β1 s β.

It was noticed by Conway that this property may in fact be taken äs a recursive

definition of ®. A charming feature of the definition is that no mention is

made of the binary System; on the other hand, (2.1) cannot be taken äs a basis

for an efficient algorithm to calculate α θ β.

As Conway remarks, θ is in a sense the simplest addition making the

ordinals into a Group. More precisely, if * is any Group Operation on the
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ordinals, then surely

α ·»· β ̂  α' # β for all α' ̂  a,

a * ß ̂  a ·* ß' for all ß' -/ ß.

Taking for σ * β the £2.slJ.e_s_t ordinal not forbidden by these rules, for

a' ̂ a and ß1 < ß (qjnce α'*β» CfHß' must "aiready exist") we obtain «· = Θ.

1t is remarkable fhat startiiig from Lhe _j_nequalities above we arrive in this

way at a Group structure, Precisely the same tbing happens for n i m multiplication.

The basic inequality to be used bere expresses that we wish no zero-divisors, i.e.

(a - a').(b - b!) ί 0

l or a ^ a ' , b Φ b' , co

ab i- a ' b + ab ' - a ' b ' .

For us , + = - = Θ, so we are led to the following definition of nim multiplication,

due to Conway :

oc°ß i s the smallesf ordinal number different from all ordinals

(σ'°β) Φ (α^β1) Φ (α1 °β' ), wich α' ̂  α, β' ̂  β.

For example, if α ~ Ο, then no u 1 ̂  σ exists, so theres are no forbidden

elemenLs; hencc 0°ß -- ö for all ß. in a siroilar way one proves thaL loß = ß

for all ß.

Conway ! s amazing result is,

Theorem. The class On of ordinaj number s, with addition °d and multiplication

°, is an algebraically c] osed Fieicl of characferistic 2.

This field i s denoted by On,. .
' ""̂ 1

In the next section we shall see which role the nim product plays in the

analysis of games. In section k the snbfieJd JN of On„ will be considered,

^
and secLion 5 is dcvoted to the nim-algebra of transf i n i U· ordinals.



3. Coin turning games.

It is not difficult to define a multiplication of games such that the

multiplicative analogue of the sum theorem holds: if we put

J X K = |(j χ K) + (J X k) + (j χ k): j 6 J, k ζ K}

then one easily checke that

G(J χ K) = G(J)°G(K)

for all games J, K. Unlike sums, however, products do not naturally turn

up in the analysis of games, and it is in fact hard to see how a product lends

itself to practicai play. For example, consider the game n χ m, with n, m

natural numbers. After t moves the position will be of the form

(3.1) ( a X b ) + ( a x b ) + ... +

with all a., b. natural numbers. A legal move is to replace one of the

terms, (axb) (say), by three terms (a'xb) + (ayb1) + (a'xb1), with

a' < a, b' < b. Conway, in his gaine "Diminishing rectangles", represents

the position (3.1) by 2t + l rectangular cards placed on a table, the i-th

card measuring a. inches in one direction and b. in the other. Cards with

a. = 0 or b. = 0 are naturally invisible, which corresponds to 0 χ J = J χ 0

= 0 for all games J. Conway assumes that the players have an indefinitely

large stock of cards and a pair of scissors at their disposal; for a description

of the ritual, see ONAG, p. 132.

A more playable version of the same game is obtained if we observe that,

for any two fixed natural numbers a and b, the number of times (a χ b)

occurs äs a term in (3.1) is only relevant modulo two, äs far äs the Grundy

number is concerned. This is an immediate consequence of the sum theorem and

the fact that On has characteristi c 2. Thus we may restrict attention to
'Z

positions

U.:>) (ajXbj) l- (a2xb2) f ... t- l'auXbu)

in which a l l iKiirs (a b ) are d t s t i n r t . Moviii}- now nieans flrsL Lo replace
1 ι i



one of the terms (axb) by three terms (a'xb) + (aXb1) + (a'xb1), with

a ' <"" a, b ' <~ b, and nex_t to remove terms occurring twice .

We represent the position (3.2) by a rectanguiar array of coins, with

those coins showin g heads occupying posiLions (a.,b ), ..., (a ,b ), the

coordinates numbering frorn zero. A legal move clearly consists of turning the

coins at the four corners of a rectangle with horizontal and vertical sides,

subject to the condiLion that the top right-hand coin goes from heads to

tails.

This is an example of a ĉ î t̂mnin̂ â.me_. As we have seen, the Grundy

number of a position i& the nim sum, over all the heads, of the nim product

of the two coordinates. The corresponding one-dimensional gnme is played with

a row of coins, a iegai rnove being to turn two coins, of which the right-most

goes from heads to tails. This game is easily seen Lo be a disguise of NIM;

so the rwo-dimensional version might be cal led ΝΤΜχΝΙΜ.

Generally, a coin Lurning game is specified by a partially ordered set P,

the _boa£d, and a sei- ΪΤ of firiite subspts oi P, Lhe .Lurrnjig sets. It is

required Lhat there are no Infinite stn'cfjy decreasing chains in P, and that

each element of Jf ha& precisely one maximal elernent. In a typical position of

the game, the board is covered witb coins, with only finitejy rnany coins showing

heads, A legal move consists of turuirsg the coins occupying a turning set,

subject to the condiLion that the coin occupying the maximal eiement of Lhe

turning set goes fromhcods t.o tatls. More fornialjy, a posiLion is determined

by a finile subset A of P, and a legal move is to replacc Λ by iLs

synimetric difference with some element T of 3", subject to the condition

thaL the maximal element oC T is contained in A. As usuai , (.wo players

move alternately, and if no legal move in possible - this is bouad to happen

after finitely many turns - the jast player Ls the winner,

In the coin turning garne specified by P and if, let A denote the
c ,o

position deLermined by the finite subset A of P. It i s easily checked that
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(3.3) G(A ) = Σ G(jaL )
P, 3 V, 3

(E denotes nim suramation) , and that G(jaj ) is the smallest ordinal
J- 3 O

distinct from all ordinals E ̂  . / G(jt| ), with T ranging over all

elements of 3" which have a äs their maximal element.

If P-, 3'1 and P , 3",, specify coin turning games, then the product

of these games is specified by P, 3, where P is the cartesian product of

P, and P-, and

a r - iTlXT2: TI eirr T2€;r2}.

The ordering on P is defined by

(al5a0) < (b ,b ) if and only if a < b, in ΡΊ and a„ < b. in P„ .
\ 2. — \~ i l— l l 2 — 2 2

It is easily seen that P and ΰ satisfy our requirements . The product

theorem s täte s that we have

G({(a,b)}p _) = G(ja| T )°G(|b{ T )
l ' l 9 9

for all (a,b) £ P, hence

G(A_ T) = Σ (G(jaj - )oG(}b}p T ))

P';T (a,b)eA Pl' l P2'J2

for all finite A c P. The proofs may be left to the reader.

Any game J can be represented by a coin turning game : define P(J),

J(J) by

P(j) = jjj U U P(j) (the "set of all positions of J"),

j€J

?T(J) = i i a , b } c: P(J): a € b},

and impose on P(J) the weakest partial ordering for which a < b for all

a, b f P(J) with a G b . It can be checked that, in the game specified by

P(J) and 3"(J), the position determined by the one-element subset |jj of

P(J) is J itself:

Several examples of coin turning games are given in the forthcoming book

by E. R. Berlekamp, J.H. Conway and R. K. Guy ("Winning Ways", Freeman, > 1978).
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We describe here a class of examples, invented by Conway, which has an

interesting connection with coding theory.

Let d, n be natural numbers, satisfying n > d > 1. We choose P =

n = JO, l, ..., n-lj with the natural ordering. and 3 = J T c P: l £ #T < d|.

Thus, the coiri turning game specified by P and 3" is played with a row

of n coins, and a legal rnove is to turn less than d coins, but at least

one, the right-most going from heads to tails.

We identify the positions in this game with the elements of W„ (here

f") — l Ώ.
IF„ is the two-element f ield), the element (a,)._„ of !''„ corresponding

to the subset ji £ P: a. - l}, ßy (3.3), the map TF ' -» IN which maps

each position to its Grundy number, is 1F0~-1 inear; here JN Ls an IF -vector

space with nini addition. Therefore the subset K c: 1F9 of positions with

zero Grundy number is a linear subspace of TF? . Recall that the positions

with zero Grundy number are exactiy Lhose which one should move to in order

t o w i n.

We give an alternative dei-cription of thcs·^ positions. Order IF„

lexicographical Ly, by (a.). < ib.). i f aa'i unJy ii i.here exists i Γ η
0 f J L iC-n i L(-"n

with

a. = 0, b. = l, a, = b, for all i f n v/i f. h i > i.
J J ' L

The Haji™iĵ _̂ iöJ:ance_ b ο η ΙΕ̂  i s defined by

6((a.)._ .(b.)_ ) = #ii f n: a. + b.}.
i i(?n i ifn ' i i1

H p , (0) (l) (k-J) , _ n
Now we construct a .'jequence of e Lements c , c ,...,(· of F9

in the following Jnductive manner:

c is the Least eleraent x. f E!r for which
/;

6(c'j , x) > d for all j -" i ;

i l no such \ ex i r, Ls theu thf cons Lrucl i on slops^ and we put k =· i . Gleariy,

all elements of f, - \c , c" , .„., c' j have mu'rua! Hamming distance at

least d; in the language of coding theory, the subse-t Π of "IF„ is a

code of word length n arid distance d over D7,,11 , Moreower, C i s the
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lexicographically first such code, in an obvious sense .

Notice that c = Ο £ IFn , and that

The definition of the c makes it clear that in the game we are discussing

it is illegal to move from c to c J , for any pair j, i, but that for

every χ £ ff„n not appearing among the c X there exists a c J < χ such
z

that it is legal to move from χ to c . These properties imply that the

c are exactly the positions one should move to in order to win, i.e.,

C = K.

It thus follows that the lexicographically first code of given word length

and distance over IF« is linear. It is an amusing exercise to prove this

directly.

Conway observed that for specific choices of d and n some well known

codes appear.

d = 1. In this case, C = TF^ ; the game is a very quick win for the second

player .

d = 2. Here C c F" is the "parity check code", consisting of all vectors

with an even number of coordinates equal to one. The game is known äs "She loves

me , she loves me not".

d = 3. This game is a disguise of NIM. For n = 2 - l, for some m > 2, the

code is the Hamming code; this is a perfect orie error correcting binary code.

Its dimension is n - m.

d = 4. Here we obtain, in dimension n = 2 , the extended Hamming code, which

is obtained from the Hamming code by adding a parity check bit in front. We

leave the analysis of the game to the reader.

d = 5 n = 17. This yields the quadratic residue code with the prime 17, of

dimension 9.

d = 6, n = 18. The same, extended by a parity check bit.

d = 7 n = 23. The code obtained here is the famous Golay code, a perfect
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binary three-error correcting code of word length 23 and dimension 12.

d = 8, n = 24. The same, extended. The group of all permutations of the n

coordinates of IF mapping the code to itself is the Ma thi_eu_ group MOA·

It acts 5-fold transitively, anrt has order 24.23.22.21.20.48.

The reader easily checks that, for odd d, the passage from d, n to

d -·- l , n + l generaily corresponds to adding a parity check bit in front of

the code C.

4. Exercises with natural numbcrs.

The set IN of natural numbers i s a subfield of On„ which is isomorphic to"/.

the quadratic closure of ]F„ . We recall Conway ' s more precise results. For

proofs, see ONAG or section 5.

The quadratic closure of F„ may be described äs

where the x. satisfy the equations

(4.1) x,2 + x. + ff x. = 0.
J

For each i we have

Tp ( v v v ) = ff?UL/}V-".*v3A^5..05.il, „ / — 1Γ . j

and x. is quadratic over this field. It follows that any eleinent of

IF„(x ,x ,x„,·· .) can be written in a unique way äs

(4.2) Γ ΤΤ x.,

ifV

where Us is a finite set of finite subsets of M.

Any natural number can be uniquely written äs )Y.cW ^ > with W c: IN finite,

Writing each k Γ W äs /. . 2 for some finite V c. IN depending on k we see

that every natural number has a unique representation

21
(4.3) y Ti 2Z J

vrto iev

with U) äs before.
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Conway proved that there is a field isomorphism (IN, Θ,°) -> IF„(x ,x , ...)

mapping the element (4.3) to (4.2). In view of (4.1) we are thus able to nim-

22 21 21 2° 21
multiply any two natural numbers. For example, 7 7 = 2 «2 +2 ·2 +2 +1

maps to x„x + X..X» + x, -t- 13 so 77°77 maps to

2 2 2 2 ^ 2

X2X1 + X1X0 + Xl + l

2 2 2
which by x, = x2 + X1X0' Xl = Xl + XQ' X0 = X0 + 1 reduces to

X2X1 +X2X0 + X1X0 +X1 + 1·

22 21 22 2° 21 2° 21
This is the image of 2 -2 +2 '2 +2 -2 + 1 + l = 109, so

77077 = 109.

21 21
The isomorphism implies that for each i the number 2 = {θ, l, 2, ..,2 -l!

is a subfield of IN.

Exercise 1. From the definition of the niin product it is clear that n°m < nm,

since the number of "forbidden values" is at most nm. For which pairs of

natural numbers does equality hold?

21
Exercise 2. Prove that 2 is a primitive root of the field 2 if and only

if i = 0 or 1.

2±
Exercise 3. Prove that x°°3 = 2 has three Solutions in IN, for each i > 2.

Here of course x°°3 = x°x°x. Can the Solutions be explicitly written down?

(To the last question l have no satisfactory answer).

Exercise 4. Prove that the following algorithm to calculate the nim product

of two natural numbers is correct.

Write each of the two numbers n, m to be nim-multiplied in the binary

System:

n = v a. 2k, m = Σ b 2 ,

k k k

with all a , b equal to zero or one, and almost all to zero. For any natural
tC K

number k = Σ- ^ (V er U finite) we define k* = Σ̂  31. Multiply the two

polynomials and * l» ^[X] · Let the result be
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f = Σ ĉ  6 3F2X], C/t C- 0, 1 = F2 .

$ If now every -t with c = ] tr, of the form k*, then with cL = c we

k*
can write f = Σ d X , and the product of n and m is given by

K. tc

n°m = Σ d 2

k k

where d ς JO, ] f is interpreted äs an element of IN,
K.

If however c = l for some f not of the form k*, then let h denote the
'L·

largest such l. The number h has a 2 in its ternary exparision, say at

Position j (i.e., corresponding to 3 ) , with j minimal. Redefine f and c
•L

by

f :»f +Xh+Xh-3l+Xh-(3Jf1+1>/2 (in I

f = v c Y1

l

and return to φ.

Exercise 5. Prove that the following aigorithm to determine the nim inverse

l /n of a non-zero natural number n tertnJnates. If n = ] , put 1/n =· ].

2i
If n > 1 , then determtne the largest natural number i with n > 2 , put

21
a = [n/2 ] (greatest integer brackets)> calculate m = l/(no(n©a)) by

recursion and put l/n = (n©a)°m.

2n
_Exer_ci_se_6. Let q be a natural nuraber Tihich Ls a field, i.e. q = 2 for

some n, Then jq : i £ IN j is a q-basis Coi IN, and if we express the

q~linear map F: !N -> IN defined by

F ( χ ) - χ ° ° q

(repeated nim mulLiplication, cf . exercise 3) on this basis:

qJ0oq = χ b °qL,

J

with b.. f q, b.. = 0 for almost all i (for fjxed i), the coefficients
ij n' 13

b . . sati sfy
JJ 7

b . . = 0 i f i > j ,
-*-J

b . . = l for all j ,
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b. . , = l for all j,
J J+l

b „ does not depend on j, only on q, and equals 0 or 1.
j j+2

In particular

q o o q = q ® l = q + l ,

q2°oq = q Θ q Θ e = q + q + ε

where e = b „ € |0, ij.

Exercise 7. For q = 2, 4, 16, 256, 65536 we have e = 0, l, l, 0, 0 in the previous

exercise, respectively. What is the general rule? (I do not know the answer).

Exercise 8. Let the 2 χ 2 -matrices A , B over TF be defined by

^ >2^n n 2

\)=(1)' Vl

0 A'

An = (D, A^ =|
A A
n n'

B A B
n n r

0 B
n J

Prove that if we put q = 2 in exercise 6 we have

B = (k-i^rvi i<r?nsn ij (J<L,J<̂

and that A2B = B A , for all n > 0. (See page 16 for the matrix B,.)
n n n n 5

Exercise 9. Let q € 3N be a field. We extend the q-vector space structure on IN

to a module structure over the polynomial ring q[X] by

X.n = nooq for n ζ IN.

Prove that for every i € XN the number q is a q[X]-submodule of M, and that

IN has no other q[X]-submodulas except itself.

Exercise 10. Let the natural numbers q, r be fields, with q < r, and let χ ς τ.

Prove that the elements j(x), with σ ranging over the Galois group of r

over q, constitute a q-basis of r if and only if χ > r/q.

lixercise 11. Let n be a natural number which is a group, i. e. a power of 2.

Prove Lhal the sequence (n°°q) , , 16 , q ranging through the natural
q~^) ̂ j Lu> · · ·

numbers which are fields, is monotonically non-increasing with limit n.
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Exercise 12. Let a, n £ M. Prove that

i°T (a ® i) = ^ °c

Exercise 13. Let n ζ IN. Prove that

Σ i°°j = 0 if 0 <" j < 2n - l,

i<2n

= 1 if j = 2n-l.

l l l i 1 1 1 1 1 l

1 1 1 1 1 1 1 1 1 l

1 1 1 1 1 1 1 l l ] l

1 ] l 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

11 J l l l J ] l l l l l

1 1 1 l 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 3 1 1

l i l l l 1 1 1 l

1 1 l l l i l l L l

1 1 1 1 1 1 l ! l

1 1 l l l l 1 1

1 1 1 1 1 1 1 1 1 1 l 1 1 1

1 1 1 1 1 1 1 1 l

1 1 1 l 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 l 1 1 1 1

1 1 l l 1 1

1 1 1 1 1

1 1 1 1 1 1 1 l

1 1 1 1 1

1 1 1 l

1 1 1 1

l ] J l l

l J l

J l l

l l

l ]

l

The inatrix Br (see exercise 8). Zeros are not shown.
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Exercise 14. Let q ξ IN be a field. Prove that the (q + l)-st nim-roots of

unity different from l are the numbers

((x°x)®qe(q/2))/((x°x)©x©(q/2)), 0 < χ < q.

Here 1 denotes nim division.

Exercise 15. (S. Norton). Define a&b, for natural numbers a and b, by

a&b = smallest natural number different from all numbers

a' &b, with a' < a,

a& b 1 , with b' < b,

a"&b", with a" < a, b" < b, a&b" = a" &b.

Prove that (IN, &) is an abelian group of exponent three, and that a&b is

obtained by writing a and b in the ternary System and adding without

carrying.

Exercise 16. Is there a multiplication * on TN, with a similar definition

äs °, such that (IN, &, #) is a field of characteristic three? And what

about characteristics 5, 7, 11, ..., 0 ? (I do not know).

5. Trans finite nim-algebra.

This section is devoted to the nim-algebraic properties of ordinals. For the

ordinary arithmetic of ordinals to be used, see H. Bachmann, Transfinite

2
Zahlen, Springer, Berlin etc., 1967 . We denote by o) the least infinite

ordinal, and we adopt the convention α = ß: β is an ordinal < a

ordinals a; so uu = IN. We call α a group, ring, etc., if it is one with

respect to the nim operations.

The basis for all we shall say is formed by Conway's simplest extension

Lheorcms, which state that an ordinal α behaves algebraical J y in the simples L

possiblo wav with respect to Lhe sei α of smaller ordinais. More precisely,

if α > 2 then we have :

- if α is no group, then α = β Φ γ, where (β, γ) is any lexicographically



- l!

least pair of elements of α with β Θ γ & α;

if α is a group but no ring, then α = β ° Υ> where (β,γ) is any

lexicographicaliy least pair of elements of α with β ° γ ̂  α;

if a is a ring but no field, then a - 1/ß, where β is the least non-

zero element of α with i/ß ̂  a;

if a is a field but not perfect, then α°α = β, where β is the least

element of σ having no nim-square loot in a;

if a is a perfect field but not algebraically closed, then α is a zero

of the lexicographicaliy least polynomial with coefficients in α having no

zero in α (in the lexicographic order, consider high degree coefficients

first);

if α is an algebraicaliy closed field, then α is transcendental over a.

Exercise. Let a, β be fields, a < ß. Show that β = α for some γ. Prove

2
that if γ = 4, then also α is a field.

(i)
The foregoing results were used by Conway to show that uj is an

algebraic closure of 2 = JO, l}, see ONAG, Ch. 6, th. 49. For a proof that

UÜ
in in the nim operations can be performed effectively, if the ordinals are

represented in Cantor normal form, see H¥LJ, On the algebraic closure of two,

Proc. Kon. Ned, Akad. Wet. j30 = [ndag. Math. 39_ (1977), 389-397. The reader is

invited to solve the following problem, and Lo communicate the solution to me:

is i t true that

13 7
((D )°°47 = oj 4- ] ?

Let t be an ordinai which is an algebraically closed field, e.g. t =

01
jj'Jj . Then t is transcendental over t, so a t-basis for t(t) is given by

B = itoon: nfu)} U i (t Θα) °° (-n) : α € t, nfou, n i θ}

"oarttal fraction expansions"). it can be deduced from the simplest extension

theorems that

t°°n ·? t°°m if n, m ξ; οι, η < m,
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t°°n < (t9a)°°(-m) if n, in ζ uu, m φ Ο, α f t,

(t®a)°°(-n) < (t®a)°°(-m) if n, m £ ω, 0 < n < m, α € t,

(t9a)°°(-n) < (t©ß)°°(-m) if n, m £ ω, / Ο, α, β € t, α < ß,

and that, for ctb, ßb € t, % = ßb = 0 for almost all b ζ B, we have

g cu °b< Σ ßb°b
bfB b£_B

if and only there exists b' 6 B with afe , < ßb,, ab = ßfe for all b ζ Β

with b >b'. So the well-ordering of t(t) is lexicographic with respect to

the t-basis B. Since B has order type uu.(l+t) = t (use the last exercise1)

it follows that t(t) = t . In particular:

UU
uu _

(llT , Θ, o) - lF2(t) .

The field t(t) is made perfect by adjoining t°°(l/2 ) for all n ζ uu. That

yields a tower of ω quadratic extensions, so the perfect closure of t is

(tt)2 = ttüU, in particular

+̂ 1 ωω
m^ is the perfect closure of ωω

Since algebraic extensions of perfect fields are perfect, the next nim-square

root extraction will only take place after the next transcendental .

We prove :

Theorem. If the ordinal t is an algebraically closed field, then the

quadratic closure of t(t) is

.>

i· t-V nxlim t̂ / ,

in particular

Λ . uu
= lim

is isomorphic to the quadratic closure of I2(t).

We make some definitions. For an ordinal x, let P(x) = x°x θ χ, and

dcnote by x* the sraallest y with P(y) = x; the other y is then χ* Φ l
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Notice that xiflSy*= (χφγ)* for all χ and y. If the ordinal u is a

field, we put P[u] = jp(x): χ ζ u}; this is a nim-additive subgroup of u.

The field u is quadratically closed if and only if u is perfect and P[u] = u,

i.e. χ* ζ u for: all χ ζ u. If u is perfect but not quadratically closed,

then u = χ·"· with χ the smallest element of u - P[u]. Clearly, this χ is

also the smallest element of

L(u) = )λ<Ξυ: there is no β (E u such that λΘΡ(β) can be written

äs a finite nim sum of ordinals <λ}.

We notice that every λ € k(u) is a group, and that L(u) represents a 2-basis

for u/P[u]. One should think of L(u) äs ''the list of elements λ for which

\* must be adjoined". Iri the case u = t(t) = t it is straightforward to

verify that

L(tt) - {(t°°(2n+l))°X, ((t®a)°°(-2n-l))°X: nftu, α,,λζΐ, λ a group}.

f" Q
(Notice that P[t~) = t.) The order type of L(t') is s. t, where 2 = t.

If u/u" is algebraic and purely inseparable, then L(u) = L(u'), äs

one easily checks. Thus L(t ) = L(t ). The above theorem now follows from

the following more gcneral claim, in which an s-njumbej: is an ordinal α with

2tt = nt- et.

Claim. Let the ordinal u be a perfect field, and let v be the order type of

L(u). Suppose that v / 0. Then the quadratic closure of u is u', where e

i s the smallest e~-number > v.

For u = 2 we find v = l, e = Uü, so o) is the quadratic closure of 2,

äs asserted in section 4. The multiplication rules in iy can easily be deduced

from the proof of the claim given below.

Proof of the claim. The quadratic closure w of u i s an ascending union

u = υΓΛ c u. c u„ c . . . d u c u ,. c: . . . c: u = w
ü l 2. w (ju+l y

for some y to be detertnined. where the u are defined äs ίο] lows: u, . =>-
α lim α

2
l i m u = (J u fora limit ordinal, and u , - u ( u ) = u with u = λ """,

α α α+1 α α α α α
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where λ is the smallest element of L(u ); if L(u ) = 0 then α = y and
α α α

2α
we have reached the quadratic closure. Clearly, u = u for all α < y.

To determine y we investigate the lists L(u ). It is straightforward

to prove that

L(u.) = lim L(u ) = U Π L(u ) = Π U L(u )

0 α<δ α<3 ß>pt P α<ί>

if δ is a limit ordinal,

L(ua+l} = (L(ua) ~i\J)L|JVX: λ € L(ua}i if L(ua} * 0'

It follows that if we put

M(ct) = U L(u ), for α < y,

ß̂ x ß

then M(a) is a beginning segment of M(a'), for α <α' < y, and L(ua)

consists of all elements of M(a) except the first α ones. Consequently, if

f(a) is the order type of M(a), then we have

f(0) = v,

f(lim a) = um f(a),

f(a + D = f<a) + (-a + f(a)) if f(a) >a,

and y is the only α with f(a) = a. Notice that f(a) >a for all α < y,

and that f(a) < f(a1) if a < a1 < y.

Let first l < v < uu. Then one easily checks that f(n) = -(2n-n-l) + v.2n

„y

for all n < uu, so f(uu) = UU, y ~ UU, w = u = u , and since uu is the smallest

e-number > v the claim follows.

Next assume that v > uu. Then f(n) = v.2" for all n < uu, so f(uu) = v. ω

> uu.m > UU> hence y > uu· From the definition of f it is clear that f(a) < v. 2

whenever f(cc) is defined, i.e. whenever α £ y. Let now e denote the smallest

e-number > v. If e < y then f(e) is defined, and f(e) < v.2 = e (cf.

Bachmann, section 15), contradicting that e <" y. We conclude that c >y.

Wc prove below:

n

(5.1) ω < β < e => f(ß) is defined and > β + 2P.

It follows that every β <e is < y, so e <y since e is a limit ordinal.
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We conclude that e = y, and w - u = u = u } äs required.

The proof of (5.1) is by induction on ß. For ß = uu we have f(ß) =

v. CD > (jü.üu >uj.2 = ω 4- 2W , äs required. Next, if f(ß) > β + 213 then f(ß) > 0,

R R
so f(ß+l) is defined, and since ß > ti) imp] ies l + 2 = 2P we have in fact

f(ß+l) = f(ß) + (-ß + f(ß)) > β + 2ß f- 2ß = β + l 4- 2ß + 2ß = (ß + 1) 4- 2ß+1, äs

required. It remains to do the case of a limit ordinal. Let β < ε be a limit

ordinai. Then f(ß) = lim f(a) > lim (a + 2a) = 213. Now 2^ is a "γ-number",
"

g ß α<β β

i.e. δ + 2μ = 2P for all ordinals δ < 21 (see Bachmann, section 15), so if

ß < 2^ then 213 = ß + 2^ and f(ß) > ß f- 213, äs required. T£ however ß > 2"

then ß = 2 and ß is an c-nuraber. But e is the smallest ε-number > v,

and β < ε, so we raus t have ß £ v. Since f is strictly increasing and

f (0) = v, we have f (a) > v + a for all a, in particular

f(ß) >v + ß > ß + ß - ß + 2ß,

äs required. This proves (5.1), the claim, and the theorem.

Problem. Can all field operations be performed effectively in the field e ,

if all ordinals are written in Cantor normal form? Can all quadratic equations

be solved effectively in cf? (The above proof seems to indicate two affirmative

answers , )

w( 5 )
Exercise . Prove that e n°°3 = w

Exercis_e . Prove that e, (the least c-number > e„) is the quadratic closure

of cQ.

It is unknown which ordinal number i s the algebraic closure of e . We

propose a conjecture. For ordinals x; a , ÖL· , α? , ... (indices Γ αΟ , almost

all 0, we define f (x;a„,o, ,a„ , , . . ) äs follows:

f(x;0,0,0,...) =·- x 4- l ,

f (x;aQ+l ,α, ,α2> · - · ) ~ f (f (x;ct„,a. ,a„, . , . );05α, ,α,,' · - · )

(left iteration),

= lim f (χ;ί),̂  ν ,ϋ,α ,

Q' ß k><

if ß is a limit orditta] , and k (. ti),



f (χ;0, .̂ . ̂Ο,α,+1 ,α,.-, ,α, ,ο 5 · · ·) = smaltest y >x for which
"'"kx

f(0;0, . . >jC), y,ak,a, ,,α, 2> · · ·) - y, if k f oj, k > l
"~ k-1χ

The proof that the definition makes sense is left to the reader,

Conjecture. If Lhe ordinal t is an algebraically closed field, then the

algebraic closure of t(t) equals lim f(t;0,...,0,1,0,0,...).

' "ηχ" '

The conjecture is based on the assumptiori that any polynomial is irreducible,

except if one explicitly adjoined a zero of it. Clearly, the assumption is wrong,

but it may well be "cofinal" with the true state of affairs.

Problem. Prove that the algebraic closure of t(t) is at most irs conjectured

value. (This should be Lhe easy part.)

Exercise. Prove that f (x;a, ß, 0,0,0, ...) - ur+· α if x ' uu , and -χ ί l i- α

if χ > uu .

Ex.gr eise. Prove that f(0;0,0,2,0,0, ,..) is the least ordinal α wLLh [ojn = cc,

in Conway's notation (ONAG, p, 63).

Institut des Hautes Etudes Scientifiques, February 1978

91440 Bures-sur-Yvette.

Mathematisch Instituut,

Roetersstraat J5

1018 WB Amsterdam.


