
Многочлены 101

Тимофей Равнушкин, Иван Пискарёв

Январь 2026

Содержание
1 Нотация 1

2 Операции с многочленами и рядами 2
2.1 Обращение степенного ряда . 2
2.2 Деление с остатком . 3
2.3 Метод Ньютона . 3
2.4 Формальная производная . 4
2.5 Логарифм . 4
2.6 Экспонента . 4

3 Вычисление и интерполяция 5
3.1 Chirp-z transform . 5
3.2 Multipoint evaluation . 5
3.3 Интерполяция через мультипоинт . 5

4 Half-GCD 6

5 Поиск корней над Z/𝑝Z 6

6 Taylor Shift 7

7 Базис нисходящих факториалов 7
7.1 Определения . 7
7.2 Простое применение . 8
7.3 Вычисление, интерполяция и смена базиса . 8
7.4 Сдвиги . 9

1 Нотация
Все многочлены и степенные ряды в этом конспекте рассматриваются над вещественными числами,
если не указано иное.

Определение 1.0.1

Формальным степенным рядом от переменной 𝑥 (ФСР) называется бесконечная
сумма 𝐴(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + . . . (вне зависимости от того, сходится такой ряд при
каких-либо значениях 𝑥 или нет). На формальных степенных рядах определено умножение
на вещественное число (поэлементное), сумма (поэлементная) и произведение, эквивалентное
произведению многочленов (свёртка последовательностей коэффициентов):

𝐴(𝑥)𝐵(𝑥) = (

∞∑︁
𝑖=0

𝑎𝑖𝑥
𝑖)(

∞∑︁
𝑗=0

𝑏𝑗𝑥
𝑗) = (

∞∑︁
𝑘=0

∑︁
𝑖+𝑗=𝑘

𝑎𝑖𝑏𝑗𝑥
𝑘) = 𝐶(𝑥)

Будем обозначать коэффициент при 𝑥𝑛 в 𝐴(𝑥) за [𝑥𝑛]𝐴(𝑥).

1

Определение 1.0.2

Если 𝐴,𝐵 - ФСР и 𝐵(0) = 0, либо 𝐴 - многочлен, то можно определить композицию
𝐴(𝐵(𝑥)) =

∑︀∞
𝑖=0 𝑎𝑖𝐵

𝑖(𝑥).

Экспонентой называется ФСР exp(𝑥) =

∞∑︁
𝑖=0

𝑥𝑖

𝑖!
.

Экспонентой степенного ряда 𝐴 называется композиция exp(𝐴).
Логарифмом степенного ряда 𝐴 называется такой ФСР 𝐵, что exp(𝐵) = 𝐴.

Определение 1.0.3

Формальной производной ФСР 𝐴(𝑥) = 𝑎0+𝑎1𝑥+ . . . называется ФСР 𝐴′(𝑥) = 𝑎1+2𝑎2𝑥+

· · · =
∞∑︁
𝑖=0

(𝑖+ 1)𝑎𝑖+1𝑥
𝑖

Определение 1.0.4

Общеизвестно, что для любых многочленов 𝐴 и 𝐵 существует единственное разложение

𝐴 = 𝐷𝐵 +𝑅,deg𝑅 < deg𝐵

Будем называть 𝑅 остатком 𝐴 по модулю 𝐵.
Многочлены 𝐴 и 𝐵 называются сравнимыми по модулю 𝐶, если у них одинаковые остатки
по модулю 𝐶. (Запись: 𝐴 ≡ 𝐵 (mod 𝐶))
Для формального степенного ряда 𝐴(𝑥) =

∑︀∞
0 𝑎𝑖𝑥

𝑖 будем называть его остатком по модулю
𝑥𝑛+1 многочлен 𝑎0 + 𝑎1𝑥+ · · ·+ 𝑎𝑛𝑥

𝑛.

2 Операции с многочленами и рядами

2.1 Обращение степенного ряда
Для любого ФСР 𝐴(𝑥) такого, что 𝐴(0) ̸= 0, существует ФСР 𝐴−1(𝑥) такой, что 𝐴−1𝐴 = 1. Давайте
научимся находить его первые 𝑛 членов (будем считать, что мы умеем получать коэффициенты
𝐴 за 𝑂(1)).

Начнём с 𝐵0 = 𝑎−1
0 ≡ 𝐴−1 (mod 𝑥) и будем удваивать степень 𝑥, по модулю которой у нас есть

обратный (т. е. удваивать количество найденных коэффициентов).
Пусть 𝐵𝑘 ≡ 𝐴−1 (mod 𝑥𝑎), где 𝑎 = 2𝑘. Тогда для следующего 𝐵𝑘+1 должно быть выполнено

𝐴𝐵𝑘+1 ≡ 1 (mod 𝑥2𝑎):

𝐴𝐵𝑘 ≡ 1 (mod 𝑥𝑎)

1−𝐴𝐵𝑘 ≡ 0 (mod 𝑥𝑎)

1− 2𝐴𝐵𝑘 +𝐴2𝐵2
𝑘 ≡ 0 (mod 𝑥2𝑎)

1 ≡ 𝐴(2𝐵𝑘 −𝐴𝐵2
𝑘) (mod 𝑥2𝑎)

𝐵𝑘+1 = 𝐵𝑘(2−𝐴𝐵𝑘)

Таким образом мы удваиваем количество известных нам коэффициентов за 2 умножения много-
членов. Итоговая асимптотика 𝑇 (𝑛) = 𝑇 (𝑛/2) +𝑂(𝑛 log 𝑛) = 𝑂(𝑛 log𝑛)

2

2.2 Деление с остатком
Пусть у нас есть многочлены 𝐴(𝑥) и 𝐵(𝑥) степеней 𝑛 и 𝑚, соответственно, причем 𝑛 > 𝑚. Мы
хотим найти такие многочлены 𝑄(𝑥), 𝑅(𝑥), что

𝐴(𝑥) = 𝐵(𝑥)𝑄(𝑥) +𝑅(𝑥), deg𝑅 < deg𝐵

Определение 2.2.1

Реверсированным многочленом многочлена 𝑃 (𝑥) называется многочлен 𝑟𝑒𝑣(𝑃 (𝑥)) =
𝑥deg𝑃 (𝑥)𝑃 (𝑥−1). (На самом деле, это просто формализация разворота коэффициентов.)

В реверсированных многочленах можно записать

𝐴(𝑥)−𝑅(𝑥) = 𝐵(𝑥)𝑄(𝑥)

𝑟𝑒𝑣(𝐴(𝑥))− 𝑥𝑛−deg𝑅𝑟𝑒𝑣(𝑅(𝑥)) = 𝑟𝑒𝑣(𝐵(𝑥))𝑟𝑒𝑣(𝑄(𝑥))

𝑟𝑒𝑣(𝐴(𝑥)) ≡ 𝑟𝑒𝑣(𝐵(𝑥))𝑟𝑒𝑣(𝑄(𝑥)) (mod 𝑥𝑛−𝑚+1)

𝑟𝑒𝑣(𝑄(𝑥)) ≡ 𝑟𝑒𝑣(𝐴(𝑥))𝑟𝑒𝑣(𝐵(𝑥))−1 (mod 𝑥𝑛−𝑚+1)

2.3 Метод Ньютона
Пусть у нас есть функция 𝐹 (𝑥) =

∑︀∞
𝑖=0 𝛼𝑖(𝑥− 𝛽)𝑖, где 𝛼𝑖, 𝛽 ∈ Z[𝑥]. Мы хотим найти такой ФСР

𝑃 (𝑥), что 𝐹 (𝑃 (𝑥)) = 0. Однако, мы не умеем хранить ФСР целиком, поэтому, как и в случае с
обращением рядов, будем вычислять 𝑃 (𝑥) (mod 𝑥2𝑘) для разных 𝑘.

Предложение 2.3.1

Для любой функции 𝐹 , имеющей вид из начала абзаца, верно разложение

𝐹 (𝑥+ 𝑦) = 𝐹 (𝑥) + 𝐹 ′(𝑥)𝑦 +𝐺(𝑥, 𝑦)𝑦2

где 𝑦 - формальная переменная, а 𝐺(𝑥, 𝑦) - какой-то ряд.

Доказательство. Пользуясь биномом Ньютона и изолируя первые 2 члена из него, получим

𝐹 (𝑥+ 𝑦) =

∞∑︁
𝑖=0

𝛼𝑖(𝑥− 𝛽 + 𝑦)𝑖

= 𝛼0 +

∞∑︁
𝑖=1

(𝛼𝑖((𝑥− 𝛽)𝑖 + 𝑖(𝑥− 𝛽)𝑖−1𝑦) + 𝑔𝑖(𝑥, 𝑦)𝑦
2) =

=

∞∑︁
𝑖=0

𝛼𝑖(𝑥− 𝛽)𝑖 +

∞∑︁
𝑖=1

𝛼𝑖𝑖(𝑥− 𝛽)𝑖−1𝑦 +

∞∑︁
𝑖=0

𝑔𝑖(𝑥, 𝑦)𝑦
2 =

= 𝐹 (𝑥) + 𝐹 ′(𝑥)𝑦 +𝐺(𝑥, 𝑦)𝑦2

Пусть 𝐹 (𝑄𝑘) ≡ 0 (mod 𝑥𝑎). Мы хотим найти 𝑄𝑘+1 ≡ 𝑄𝑘+𝑥𝑎𝐶 (mod 𝑥2𝑎) такой, что 𝐹 (𝑄𝑘+1) ≡
0 (mod 𝑥2𝑎). Подставляя 𝑥 = 𝑄𝑘, 𝑦 = 𝑥𝑎𝐶 в разложении из 2.3.1, получим

𝐹 (𝑄𝑘+1) = 𝐹 (𝑄𝑘) + 𝐹 ′(𝑄𝑘)𝑥
𝑎𝐶 +𝐺(𝑄𝑘, 𝑥

𝑎𝐶)𝑥2𝑎𝐶2

Пользуясь 𝑥𝑎𝐶 ≡ 𝑄𝑘+1 −𝑄𝑘 (mod 𝑥2𝑎):

0 ≡ 𝐹 (𝑄𝑘+1) ≡ 𝐹 (𝑄𝑘) + 𝐹 ′(𝑄𝐾)(𝑄𝑘+1 −𝑄𝑘) (mod 𝑥2𝑎)

𝑄𝑘+1 ≡ 𝑄𝑘 − 𝐹 (𝑄𝑘)

𝐹 ′(𝑄𝑘)
(mod 𝑥2𝑎)

Асимптотика 𝑇 (𝑛) = 𝑇 (𝑛/2) +𝑂(вычисление 𝐹 (𝑄𝑘) и 𝐹 ′(𝑄𝑘)
−1).

3

Заметим, что мы можем получить алгоритм для обращения многочлена из метода Ньютона,
пользуясь 𝐹 (𝑥) = 𝑥−1 − 𝑃 , и формула будет в точности эквивалентной 2.1.

2.4 Формальная производная

Пусть 𝐹 (𝑥) =

∞∑︁
𝑛=0

𝑓𝑛𝑥
𝑛, 𝐺(𝑥) =

∞∑︁
𝑛=0

𝑔𝑛𝑥
𝑛. Так как

(𝑥𝑛 · 𝑥𝑚)
′
= (𝑛+𝑚)𝑥𝑛+𝑚−1 = (𝑥𝑛)

′ · 𝑥𝑚 + (𝑥𝑚)
′ · 𝑥𝑛

То (𝐹 (𝑥)𝐺(𝑥))
′
= 𝐹 ′(𝑥)𝐺(𝑥) +𝐺′(𝑥)𝐹 (𝑥) В частности ((𝐹 (𝑥))𝑛)

′
= 𝑛 · 𝐹 ′(𝑥) · (𝐹 (𝑥))

𝑛−1.
Значит

(𝐹 (𝐺(𝑥)))
′
=

(︃ ∞∑︁
𝑛=0

𝑓𝑛(𝐺(𝑥))𝑛

)︃′

=

∞∑︁
𝑛=0

𝑓𝑛 · 𝑛 ·𝐺′(𝑥) · (𝐺(𝑥))𝑛−1 = 𝐹 ′(𝐺(𝑥)) ·𝐺′(𝑥)

Определим

exp(𝑥) =
∞∑︁

𝑛=0

𝑥𝑛

𝑛!

ln(1 + 𝑥) =

∞∑︁
𝑛=1

(−1)𝑛−1𝑥
𝑛

𝑛

Тогда

exp′(𝑥) = exp(𝑥)

ln′(1 + 𝑥) =

∞∑︁
𝑛=1

(−1)𝑛−1𝑥𝑛 =
1

1 + 𝑥
=⇒ ln′(𝐹 (𝑥)) =

1

𝐹 (𝑥)

Заметим, что

(ln(𝐹 (𝑥)))
′
= ln′(𝐹 (𝑥))𝐹 ′(𝑥) =

𝐹 ′(𝑥)

𝐹 (𝑥)

(ln(exp(𝐹 (𝑥))))
′
= ln′(exp(𝐹 (𝑥))) · exp′(𝐹 (𝑥)) · 𝐹 ′(𝑥) =

exp′(𝐹 (𝑥))

exp(𝐹 (𝑥))
· 𝐹 ′(𝑥) = 𝐹 ′(𝑥)

=⇒ ln(exp(𝐹 (𝑥))) = 𝐹 (𝑥)

2.5 Логарифм

Для функции ln𝑃 (𝑥) известно, что (ln𝑃 (𝑥))′ =
𝑃 ′(𝑥)

𝑃 (𝑥)
. Мы можем вычислить 𝑃 ′ за линию, найти

обратный к нему за 𝑂(𝑛 log𝑛), перемножить с 𝑃 за 𝑂(𝑛 log𝑛) и затем посдвигать коэффициенты
за линию, чтобы восстановить ln по его производной.

2.6 Экспонента
Для exp(𝑃) = 𝑄 верно, что ln𝑄 = 𝑃 , поэтому воспользуемся методом Ньютона для 𝐹 (𝑥) = ln𝑥−𝑃 :

𝐹 (𝑥) = ln𝑥− 𝑃

𝐹 ′(𝑥) = 𝑥−1

𝑄𝑘+1 ≡ 𝑄𝑘(1 + 𝑃 − ln𝑄𝑘) (mod 𝑥2𝑘+1

)

Для возведения многочлена в 𝑘-ю степень вспомним, что 𝑃 𝑘 = exp(𝑘 ln𝑃).

4

3 Вычисление и интерполяция

3.1 Chirp-z transform
Пусть нам дан многочлен 𝑃 (𝑥) =

∑︀𝑛−1
𝑖=0 𝑎𝑖𝑥

𝑖 и числа 𝑐 и 𝑚, и мы хотим вычислить 𝑃 (𝑐0), 𝑃 (𝑐1), . . . , 𝑃 (𝑐𝑚).

Обозначим 𝑏𝑗 = 𝑃 (𝑐𝑗) =
∑︀𝑛−1

𝑖=0 𝑎𝑖𝑐
𝑖𝑗 . Заметим, что 𝑖𝑗 = (𝑖+𝑗)2−𝑖2−𝑗2

2 . Получается, что:

𝑏𝑗𝑐
𝑗2

2 =

𝑛−1∑︁
𝑖=0

(︁
𝑎𝑖𝑐

− 𝑖2

2

)︁
𝑐(

(𝑖+𝑗)2

2)

В такой форме 𝑏𝑗 можно найти свёрткой 𝑎𝑖𝑐
− 𝑖2

2 и 𝑐
𝑖2

2 . Однако, во многих случаях найти 𝑐
𝑖2

2

невозможно (например, часто такое бывает при работе с остатками по модулю). Как же быть?
Несложными алгебраическими манипуляциями можно получить, что 𝑖𝑗 =

(︀
𝑖+𝑗
2

)︀
−
(︀
𝑖
2

)︀
−
(︀
𝑗
2

)︀
.

Аналогично предыдущему случаю, получим, что:

𝑏𝑗𝑐
(𝑗2) =

𝑛−1∑︁
𝑖=0

(𝑎𝑖𝑐
−(𝑖2))𝑐(

𝑖+𝑗
2)

𝑏𝑗𝑐
(𝑗2) =

𝑛−1∑︁
𝑖=0

(𝑎𝑛−(𝑛−𝑖)𝑐
−(𝑛−(𝑛−𝑖)

2))𝑐(
𝑖+𝑗
2)

Если ввести 𝐶(𝑥) =
∑︀𝑛

𝑖=1 𝑎𝑛−𝑖𝑐
−(𝑛−𝑖

2)𝑥𝑖, 𝐷(𝑥) =
∑︀∞

𝑖=0 𝑐
(𝑖2)𝑥𝑖, то получим, что:

𝑃 (𝑐𝑗) = 𝑐−(
𝑗
2)
[︀
𝑥𝑛+𝑗

]︀
(𝐶(𝑥) ·𝐷(𝑥))

3.2 Multipoint evaluation
Пусть нам дан многочлен 𝐴(𝑥) и набор чисел 𝑥1, . . . , 𝑥𝑚 и мы хотим вычислить значения
𝐴(𝑥1), . . . , 𝐴(𝑥𝑚). Очевидно, что 𝐴(𝑥𝑖) ≡ 𝐴(𝑥) (mod 𝑥 − 𝑥𝑖). При этом известно, что если
𝐴(𝑥) ≡ 𝐵(𝑥) (mod 𝐶 ·𝐷), то 𝐴(𝑥) ≡ 𝐵(𝑥) (mod 𝐶).

Обозначим 𝑃𝑙,𝑟(𝑥) =
∏︀𝑟

𝑖=𝑙(𝑥− 𝑥𝑖). Мы можем сделать разделяйку: пусть у нас уже вычислено
значение 𝐴(𝑥) (mod 𝑃𝑙,𝑟(𝑥)), тогда можно запустить следующие итерации с 𝐴(𝑥) (mod 𝑃𝑙,𝑚(𝑥)) и
𝐴(𝑥) (mod 𝑃𝑚+1,𝑟(𝑥)), тем самым уменьшив степень остатков 𝐴(𝑥) вдвое. Если заранее посчитать
нужные 𝑃𝑙,𝑟(𝑥), алгоритм суммарно будет работать за 𝑂(𝑛 log2 𝑛) (у нас log 𝑛 слоев разделяйки,
на каждом суммарно 𝑛 коэффициентов).

3.3 Интерполяция через мультипоинт
Пусть нам дан набор из 𝑛 пар (𝑥𝑖, 𝑦𝑖) и мы хотим найти многочлен 𝐴(𝑥) такой, что для всех 𝑖 от 1
до 𝑛 𝐴(𝑥𝑖) = 𝑦𝑖. Это можно сделать, решив СЛАУ с коэффициентами многочлена, однако, это
долго. Известна формула интерполяции Лагранжа:

𝐴(𝑥) =

𝑛∑︁
𝑖=1

𝑦𝑖
∏︁
𝑖̸=𝑗

𝑥− 𝑥𝑗

𝑥𝑖 − 𝑥𝑗

Очевидно, что при подстановке 𝑥 = 𝑥𝑖 в 0 обратятся все члены суммы, кроме члена с 𝑦𝑖.
Как вычислить коэффициенты 𝐴(𝑥) за быстро?
Рассмотрим многочлен 𝑃 (𝑥) =

∏︀𝑛
𝑖=1(𝑥−𝑥𝑖). Если посмотреть на его производную 𝑃 ′(𝑥), можно

заметить, что если подставить в неё 𝑥𝑖, получится в точности
∏︀

𝑗 ̸=𝑖(𝑥𝑖−𝑥𝑗), коэффициент, стоящий
в знаменателе у 𝑦𝑖.

Получается, что мы свели задачу к вычислению
∑︀𝑛

𝑖=1 𝑎𝑖
∏︀

𝑗 ̸=𝑖(𝑥 − 𝑥𝑗), что можно сделать
разделяйкой вида 𝐴𝑙,𝑟 = 𝐴𝑙,𝑚𝑃𝑚+1,𝑟 +𝐴𝑚+1,𝑟𝑃𝑙,𝑚. Итого мы умеем интерполировать многочлен
за 𝑂(𝑛 log2 𝑛).

5

4 Half-GCD
Нам даны многочлены 𝐴(𝑥), 𝐵(𝑥) и мы хотим вычислить многочлен максимальной степени 𝑃 (𝑥)
такой, что 𝑃 (𝑥) | 𝐴(𝑥), 𝐵(𝑥). Будем делать это рекурсивно (классический алгоритм Евклида
работает за 𝑂(deg𝐴 deg𝐵), а мы хотим научиться за 𝑂(𝑛 log2 𝑛)).
Заметим, что шаг стандартного Евклида можно записать, как умножение столбца из 2 многочленов
на матрицу – если 𝐴(𝑥) = 𝐵(𝑥)𝑄(𝑥) +𝑅(𝑥), то(︂

𝐵(𝑥)
𝑅(𝑥)

)︂
=

(︂
0 1
1 −𝑄(𝑥)

)︂(︂
𝐴(𝑥)
𝐵(𝑥)

)︂
И весь алгоритм тогда можно записать, как последовательность умножений на матрицы, то есть
умножение на их произведение!

Заметим, что если у нас будет функция 𝐻𝐺𝐶𝐷(𝐴(𝑥), 𝐵(𝑥)), которая по паре многочленов
будет за 𝑂(𝑛 log2 𝑛) возвращать матрицу, умножение на которую уменьшает степень второго
аргумента хотя бы вдвое, то весь алгоритм можно будет свести к двум шагам:

1. 𝑀 = 𝐻𝐺𝐶𝐷(𝐴(𝑥), 𝐵(𝑥))

2.
(︂
𝐶(𝑥)
𝐷(𝑥)

)︂
= 𝑀

(︂
𝐴(𝑥)
𝐵(𝑥)

)︂
3. поделить 𝐶(𝑥) на 𝐷(𝑥) с остатком и продолжить с 𝐷(𝑥) и остатком в качестве многочлена

В итоге это будет работать за 𝑂(𝑛 log𝑛), потому что степени обоих многочленов после шага
уменьшатся вдвое. Осталось научиться считать
𝐻𝐺𝐶𝐷(𝐴(𝑥), 𝐵(𝑥)).

Заметим, что для шагов алгоритма Евклида, в результате композиции которых степень
меньшего из многочленов уменьшается хотя бы на 𝑑, достаточно знать старшие 2𝑑 коэффициентов
обоих многочленов. Из этого придумывается способ считать 𝐻𝐺𝐶𝐷:

Пусть степень 𝐴(𝑥) равна 4𝑑, а степень 𝐵(𝑥) меньше степени 𝐴(𝑥). Для того, чтобы убрать
старшие 4𝑑

2 = 2𝑑 коэффициентов, два раза уберём по 𝑑. Но для того, чтобы убрать 𝑑, нам достаточ-
но знать только старшие 2𝑑 коэффициентов! Поэтому можно запустить 𝑀 = 𝐻𝐺𝐶𝐷(𝐴(𝑥)div𝑥2𝑑,

𝐵(𝑥)div𝑥2𝑑), затем полученную матрицу применить к
(︂
𝐶(𝑥)
𝐷(𝑥)

)︂
= 𝑀

(︂
𝐴(𝑥)
𝐵(𝑥)

)︂
, поделить 𝐶(𝑥) на

𝐷(𝑥) с остатком (это эквивалентно матрице 𝐿, полученной, как описано ранее) и от старших
коэффициентов результата ещё раз запустить 𝐻𝐺𝐶𝐷, получить матрицу 𝐾 и вернуть 𝐾𝐿𝑀 .

5 Поиск корней над Z/𝑝Z
Пусть нам дан многочлен 𝑞(𝑥) с целыми коэффициентами, мы хотим найти все такие 𝑎 ∈ Z/𝑝Z,
что 𝑞(𝑎) ≡ 0 (mod 𝑝).

Для начала заменим наш многочлен на ℎ(𝑥) = gcd(𝑞(𝑥), 𝑥𝑝−𝑥), чтобы избавиться от нелинейных
или повторяющихся делителей в разложении 𝑞 (так как 𝑥𝑝 − 𝑥 ≡

∏︀𝑝−1
𝑎=0(𝑥− 𝑎) (mod 𝑝)).

После этого выберем случайное 𝑎 ∈ Z/𝑝Z и вычислим

𝑓(𝑥) = gcd(ℎ(𝑥), (𝑥+ 𝑎)
𝑝−1
2 − 1)

𝑔(𝑥) =
ℎ(𝑥)

𝑓(𝑥)

И будем решать задачу рекуррентно для 𝑓 и 𝑔.
В 𝑓(𝑥) останутся такие корни 𝜆, что ℎ(𝜆) = 0 и (𝜆+ 𝑎) является квадратичным вычетом по

модулю 𝑝. Почему это работает быстро? Квадратичных вычетов всего 𝑝−1
2 и они распределены

равномерно, поэтому вероятность попасть в такой при прибавлении 𝑎 для каждого из корней
ℎ(𝑥) примерно равна 1

2 . Получается, что вероятность получить deg 𝑓 = 𝑘 < 𝑛 = deg ℎ приблизи-
тельно 2−𝑛

(︀
𝑛
𝑘

)︀
, поэтому на каждом шаге степень понижается почти вдвое. Итого асимптотика

𝑂(𝑛 log 𝑛 log 𝑝 log(𝑛𝑝)), если перемножать всё с помощью FFT и использовать half-GCD.

6

6 Taylor Shift
Нам дан многочлен 𝑃 (𝑥), мы хотим найти коэффициенты 𝑃 (𝑥+ 𝑎).

Заметим, что

(𝑥+ 𝑎)𝑘 =

𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
𝑎𝑖𝑥𝑘−𝑖 = 𝑘!

𝑘∑︁
𝑖=0

𝑎𝑖

𝑖!

𝑥𝑘−𝑖

(𝑘 − 𝑖)!

(𝑥+ 𝑎)𝑘

𝑘!
=
∑︁

𝑖+𝑗=𝑘

𝑎𝑖

𝑖!

𝑥𝑗

𝑗!

Если обозначить оператор дифференцирования за 𝐷 = d
d𝑥 , то 𝐷 𝑥𝑘

𝑘! = 𝑥𝑘−1

(𝑘−1)! . Тогда наше выражение
можно переписать, как

(𝑥+ 𝑎)𝑘

𝑘!
=

𝑘∑︁
𝑖=0

𝑎𝑖

𝑖!

(︂
𝐷𝑖𝑥

𝑘

𝑘!

)︂
=

(︃ ∞∑︁
𝑖=0

𝑎𝑖𝐷𝑖

𝑖!

)︃
𝑥𝑘

𝑘!
= exp(𝑎𝐷)

𝑥𝑘

𝑘!

Тут exp(𝑎𝐷) - экспонента оператора 𝑎𝐷, формально определённая, как
∑︀∞

𝑖=0
(𝑎𝐷)𝑖

𝑖! .
Дифференцирование коммутирует с умножением на скаляр, поэтому (𝑎𝐷)𝑖 = 𝑎𝑖𝐷𝑖, а ещё мы

можем избавиться от 𝑘! и получить (𝑥+ 𝑎)𝑘 = exp(𝑎𝐷)𝑥𝑘. Дифференцирование линейно, поэтому
exp(𝑎𝐷)𝑃 (𝑥) = 𝑃 (𝑥+ 𝑎) для любого многочлена 𝑃 (𝑥).

Как научиться применять ряд от 𝐷 к многочлену?
Введём линейные операторы [·] и {·} на пространстве многочленов, действующие на мономах,

как [𝑥𝑘] = 𝑥𝑘

𝑘! и {𝑥𝑘} = 𝑘!𝑥𝑘.
Заметим, что во-первых [{𝑃 (𝑥)}] = {[𝑃 (𝑥)]} = 𝑃 (𝑥) для любого многочлена 𝑃 (𝑥).
Во-вторых,

𝐷𝑖[𝑥𝑗] =
𝑥𝑗−𝑖

(𝑗 − 𝑖)!
= [𝑥𝑗−𝑖]

что можно переписать, как
𝐷𝑖[𝑃 (𝑥)] = [𝑥−𝑖𝑃 (𝑥)]

для любого многочлена 𝑃 (𝑥). (Тут мы определяем 𝑛! = ∞ для 𝑛 < 0, поэтому [𝑥𝑘] равно нулю
для отрицательных 𝑘).

Благодаря линейности [·], второе замечание можно расширить до

𝐺(𝐷)[𝑃 (𝑥)] = [𝐺(𝑥−1)𝑃 (𝑥)]

для любого многочлена 𝐺. Совмещая это с первым замечанием, получим, что

𝐺(𝐷)𝑃 (𝑥) = [𝐺(𝑥−1){𝑃 (𝑥)}]

Итого получаем, что
𝑃 (𝑥+ 𝑎) =

[︀
exp
(︀
𝑎𝑥−1

)︀
{𝑃 (𝑥)}

]︀
что можно вычислить за 𝑂(𝑛 log𝑛).

7 Базис нисходящих факториалов

7.1 Определения

Определение 7.1.1

𝑘-м нисходящим факториалом называется многочлен (𝑥)𝑘 = 𝑥(𝑥− 1) . . . (𝑥− (𝑘 − 1))

Будем считать (𝑥)0 = 1

Степень 𝑘-го нисходящего факториала равна 𝑘, поэтому они образуют базис векторного
пространства многочленов (будем называть его биномиальным базисом) (стандартный базис –
мономиальный – это 1, 𝑥, 𝑥2, . . .).

7

Определение 7.1.2

Дискретная производная ∆ функции 𝑓 определяется, как ∆𝑓(𝑥) = 𝑓(𝑥+ 1)− 𝑓(𝑥).

Заметим, что в терминах нисходящих факториалов
(︀
𝑛
𝑘

)︀
= (𝑛)𝑘

𝑘! . Пользуясь
(︀
𝑛+1
𝑘

)︀
=
(︀
𝑛
𝑘

)︀
+
(︀

𝑛
𝑘−1

)︀
,

получаем, что ∆
(︀
𝑥
𝑘

)︀
=
(︀

𝑥
𝑘−1

)︀
. Следовательно,

∆(𝑥)𝑘 = 𝑘!∆

(︂
𝑥

𝑘

)︂
= 𝑘!

(︂
𝑥

𝑘 − 1

)︂
= 𝑘(𝑥)𝑘−1

То есть дискретная производная в биномиальном базисе действует на многочлены так же, как
обычная - в мономиальном! В этом базисе можно частично обратить ∆ (полностью этот оператор
необратим, так как ∆1 = 0) – если мы знаем, что ∆𝑝(𝑥) = (𝑥)𝑘, то 𝑝(𝑥) = 1

𝑘+1 (𝑥)𝑘+1 + 𝐶 для
какой-то константы 𝐶. Будем называть эту операцию псевдоинтегрированием.

7.2 Простое применение
Рассмотрим простое случайное блуждание на 1, . . . , 𝑛 - процесс, при котором мы начинаем в 1 и
каждый шаг происходит следующее:

1. если мы сейчас в 1, мы переходим в 2

2. если мы сейчас в 𝑥 ≠ 1, мы переходим в 𝑥− 1 с вероятностью 1
2 и в 𝑥+ 1 с вероятностью 1

2

Пусть мы хотим найти матожидание количества шагов до того, как мы попадём в 𝑛.
Обозначим за 𝐸𝑥 матожидание количества шагов до 𝑛, если мы начинаем в 𝑥. Тогда 𝐸1 = 1+𝐸2,

𝐸𝑛 = 0, и

𝐸𝑥 = 1 +
1

2
𝐸𝑥−1 +

1

2
𝐸𝑥+1

для 1 < 𝑥 < 𝑛. Заметим, что

∆2𝐸𝑥 = (∆𝐸)𝑥+1 − (∆𝐸)𝑥

∆2𝐸𝑥 = 𝐸𝑥+2 − 𝐸𝑥+1 − 𝐸𝑥+1 + 𝐸𝑥

∆2𝐸𝑥 = 𝐸𝑥+2 − 2𝐸𝑥+1 + 𝐸𝑥

∆2𝐸𝑥 = −2

∆𝐸1 = −1

𝐸𝑛 = 0

Псевдоинтегрируя ∆2𝐸𝑥 = −2, получим, что ∆𝐸𝑥 = −2(𝑥)1+𝐶 = −2𝑥+𝐶 для некоторой константы
𝐶. Второе уравнение даёт 𝐶 = 1. Псевдоинтегрируя снова, получим 𝐸𝑥 = −(𝑥)2 + 𝑥 + 𝐶1 =
−𝑥2 + 2𝑥+ 𝐶1 для некоторой 𝐶1, которая из третьего уравнения равна 𝑛2 − 2𝑛.

7.3 Вычисление, интерполяция и смена базиса
Если мы научимся вычислять и интерполировать многочлены, записанные в биномиальном
базисе, мы получим способ менять базис с мономиального на биномиальный и наоборот, потому
что вычислять и интерполировать в нём мы уже умеем. Начнём с вычисления. Пусть нам дан
многочлен 𝑃 (𝑥) =

∑︁
𝑘

𝛼𝑘(𝑥)𝑘 и мы хотим вычислить 𝑃 (0), 𝑃 (1), . . . , 𝑃 (𝑑). Для точки 𝑚

𝑃 (𝑚) =
∑︁
𝑘

𝛼𝑘(𝑚)𝑘

=

𝑚∑︁
𝑘=0

𝛼𝑘(𝑚)𝑘

=

𝑚∑︁
𝑘=0

𝛼𝑘
𝑚!

(𝑚− 𝑘)!
,

8

то есть
𝑃 (𝑚)

𝑚!
=

𝑚∑︁
𝑘=0

𝛼𝑘
1

(𝑚− 𝑘)!

Правая сторона этого выражения - свёртка, поэтому можно переписать

∑︁
𝑚

𝑃 (𝑚)
𝑥𝑚

𝑚!
=

(︃∑︁
𝑘

𝑥𝑘

𝑘!

)︃(︃∑︁
𝑘

𝛼𝑘𝑥
𝑘

)︃
= exp(𝑥)

(︃∑︁
𝑘

𝛼𝑘𝑥
𝑘

)︃

Интерполяция настолько же проста - домножим обе стороны на exp(−𝑥) и получим выражение
для коэффициентов 𝛼𝑘 из значений 𝑃 (𝑚). Поэтому в биномиальном базисе можно вычислять на
отрезке точек и интерполировать из него за 𝑂(𝑛 log𝑛).

7.4 Сдвиги
Пусть у нас есть многочлен 𝑃 (𝑥), записанный в биномиальном базисе, и мы хотим вычислить
коэффициенты 𝑃 (𝑥+ 𝑐). Заметим, что

𝑃 (𝑥+ 1) = 𝑃 (𝑥) + ∆𝑃 (𝑥) = (1 + ∆)𝑃 (𝑥)

Следовательно, для целого 𝑐 верно

𝑃 (𝑥+ 𝑐) = (1 + ∆)𝑐𝑃 (𝑥) =

𝑐∑︁
𝑘=0

(︂
𝑐

𝑘

)︂
∆𝑘𝑃 (𝑥)

Если степень 𝑃 равна 𝑑, то нам нужны только первые 𝑑+ 1 коэффициентов выражения выше.
Обе стороны - многочлены от 𝑐, поэтому мы можем вычислять сдвиги и для нецелых значений 𝑐
(пользуясь обобщённым биномом Ньютона).

Мы уже умеем применять ряд от 𝐷 к многочлену в мономиальном базисе, поэтому можно
временно “забыть” о том, что мы работаем в биномиальном, заменив 𝑃 (𝑥) =

∑︀𝑛
𝑖=0 𝑎𝑖(𝑥)𝑖 на

𝐴(𝑥) =
∑︀𝑛

𝑖=0 𝑎𝑖𝑥
𝑖 и поменяв везде ∆ на 𝐷, потому что на соответствующих базисах они действуют

одинаково.

9

	Нотация
	Операции с многочленами и рядами
	Обращение степенного ряда
	Деление с остатком
	Метод Ньютона
	Формальная производная
	Логарифм
	Экспонента

	Вычисление и интерполяция
	Chirp-z transform
	Multipoint evaluation
	Интерполяция через мультипоинт

	Half-GCD
	Поиск корней над Z/pZ
	Taylor Shift
	Базис нисходящих факториалов
	Определения
	Простое применение
	Вычисление, интерполяция и смена базиса
	Сдвиги

