Задача А. Конфеты

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 5 секунд Ограничение по памяти: 256 мегабайт

На столе лежат в ряд n конфет. У каждой конфеты есть положительная целочисленная характеристика, называемая вкусностью. Вкусность i-й слева конфеты равна A_i $(1 \le i \le N)$.

 ${
m JOI}$ -тян решила выберет и съесть некоторые из этих N конфет. ${
m JOI}$ -тян хочет максимизировать сумму вкусностей конфет, которые она съест.

JOI-тян не может одновременно выбрать две конфеты, являющиеся соседними в ряду.

ЈОІ-тян еще не решила, сколько конфет она хочет съесть, поэтому вы должны найти для каждого j ($1 \le j \le \lceil \frac{N}{2} \rceil$) максимальную суммарную вкусность съеденных конфет, если она съест ровно j конфет. Здесь $\lceil x \rceil$ обозначает наименьшее целое число, не меньшее x.

Формат входных данных

В первой строке задано целое число N ($1 \le N \le 2 \cdot 10^5$).

В следующих n строках задано по одному целому числу A_i ($1 \le A_i \le 10^9$).

Формат выходных данных

Выведите $\lceil \frac{N}{2} \rceil$ строк. В j-й $(1 \leqslant j \leqslant \lceil \frac{N}{2} \rceil)$ строке выведите наибольшую возможную суммарную вкусность конфет, съеденных JOI-тян, если она съест ровно j конфет.

стандартный ввод	стандартный вывод
5	7
3	12
5	10
1	
7	
6	
20	936349374
623239331	1855340557
125587558	2763350783
908010226	3622744640
866053126	4439368364
389255266	5243250666
859393857	5982662302
596640443	6605901633
60521559	7183000177
11284043	7309502029
930138174	
936349374	
810093502	
521142682	
918991183	
743833745	
739411636	
276010057	
577098544	
551216812	
816623724	

Задача В. Не выделяйся

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 2 секунды Ограничение по памяти: 512 мегабайт

Дан массив целых неотрицательных чисел a длины n и число k. За одну операцию можно изменить любой элемент массива на 1. Необходимо сделать так, чтобы разница всех соседних элементов массива a была не больше k по абсолютному значению, за минимальное количество операций. При этом делать элементы массива отрицательными запрещено.

Формат входных данных

В первой строке входных данных даны два целых неотрицательных числа n и k ($1 \le n \le 200\,000$, $0 \le k \le 10^9$) — длина массива a и максимальная допустимая разность соседних элементов.

Во второй строке входных данных даны n целых неотрицательных чисел a_i ($0 \leqslant a_i \leqslant 10^9$) — элементы массива a.

Формат выходных данных

Выведите одно число — минимальное количество операций, которые надо сделать, чтобы абсолютное значение разницы любых соседних элементов массива было не больше k.

стандартный ввод	стандартный вывод
6 1	10
2 10 0 2 4 3	
6 3	6
2 10 2 6 4 3	
4 1	4
1 4 1 4	
10 1	0
10 9 8 7 6 5 4 3 2 1	
3 0	2
1 1 3	

Задача С. Археологи

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Ваша команда охотников за сокровищами нашла огромные залежи сокровищ! Это можно представить как n мест для раскопок на прямой. Каждое из этих мест имеет свою доходность p_i , то есть за выкапывание каждого метра в глубину в этом месте ваша команда получает p_i юаней.

Конечно, вы хотите получить как можно больше юаней. Но чтобы не создавать оползней, после ваших раскопок не должно получиться слишком отвесных склонов. Формально, для любых двух соседних мест раскопок их глубина должна отличаться не больше чем на 1. В частности, глубина в 1-м и *n*-м местах должна быть 0 или 1. Какую максимальную прибыль можно получить?

Формат входных данных

Первая строка содержит целое положительное n ($1 \le n \le 250\,000$). Вторая строка содержит n целых чисел p_i ($-10^6 \le p_i \le 10^6$)

Формат выходных данных

Выведите одно число — максимальную прибыль, которую можно получить.

стандартный ввод	стандартный вывод
5	8
1 3 -4 2 1	
4	5
1 1 -2 3	
5	0
-1 -3 0 -5 -4	

Задача D. Последовательность прыжков

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Рассмотрим бесконечную координатную плоскость. В точке (0,0) стоит фишка. Фишка должна сделать ровно n прыжков в одном из четырех направлений, параллельных одной из осей координат: вверх, вниз, влево или вправо. Длина i-го прыжка должна быть равна d_i $(1 \le i \le n)$. Может ли фишка оказаться в точке (a,b) после n прыжков.

Прыжок длины d двигает фишку:

- ullet 'U' (вверх): из (x,y) в (x,y+d)
- 'D' (вниз): из (x,y) в (x,y-d)
- 'L' (влево): из (x,y) в (x-d,y)
- 'R' (вправо): из (x,y) в (x+d,y)

Формат входных данных

В первой строке даны целые числа n, a, b ($1 \le n \le 2000, |a|, |b| \le 3.6 \cdot 10^6$). Во второй строке даны n целых чисел d_1, d_2, \ldots, d_n ($1 \le d_i \le 1800$).

Формат выходных данных

Если фишка не может оказаться в (a,b) после n прыжков, выведите "No" (без кавычек).

Если фишка может оказаться в (a,b) после n прыжков, выведите "Yes" (без кавычек), а также строку длины n из символов 'U', 'D', 'L' и 'R' — любую последовательность прыжков, приводящую фишку (a,b).

стандартный ввод	стандартный вывод
3 2 -2	Yes
1 2 3	URD
2 1 0	No
1 6	
5 6 7	Yes
1 3 5 7 9	LUDRU

Задача Е. Фейерверк

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Фейерверк — это одна из самых захватывающих частей фестиваля. Для фейерверка очень важно, чтобы все взрывные устройства, соединенные набором фитилей с точкой поджога, взорвались одновременно в нужный момент. Так как взрывные устройства, используемые для фейерверка, очень опасны, они установлены на некотором расстоянии от точки поджога, и соединены с ней фитилями. Чтобы соединить несколько взрывных устройств с точкой поджога, фитили соединяются наподобие ребёр дерева, как показано на Рисунке 1. Искра появляется на точке поджога и распространяется по фитилями. Когда искра достигает соединения нескольких фитилей, она начинает распространяться по всем ним. Скорость искры постоянна. Рисунок 1 показывает, как 6 взрывных устройств $\{E_1, E_2, \ldots, E_6\}$ могут быть соединены, а также какой длины должен быть каждый использованный для этого фитиль. Кроме того, показано время взрыва каждого устройства, если считать, что искра в точке поджога появилась в момент времени 0

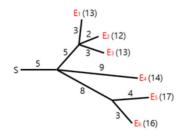


Рис. 1: Схема соединения

Хьюнмин должен подготовить схему соединения. К сожалению, в его схеме взрывные устройства могут взорваться не в одно и тоже время. Необходимо изменить длины некоторых фитилей, так чтобы все устройства взорвались в одно и тоже время. Например, чтобы все взрывные устройства на рисунке взорвались в момент времени 13 длины фитилей надо изменить как показано слева на Рисунке 2. Чтобы все взрывные устройства на Рисунке 1 взорвались в момент времени 14 длины фитилей надо изменить как показано слева на Рисунке 2.

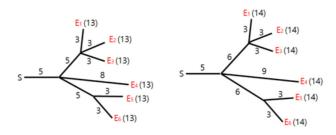


Рис. 2: Примеры изменения длин, после которых взрывы происходят одновременно

Стоимость изменения длины фитиля равна абсолютному значению разности длин до и после изменения. Например, стоимость изменения схемы на Рисунке 1 до схемы слева на Рисунке 2 равна 6. Стоимость изменения схемы на Рисунке 1 до схемы слева на Рисунке 2 равна 5.

Длину провода можно уменьшить до 0.

По заданной схеме соединения, необходимо изменить длины некоторых фитилей, так, чтобы все взрывные устройства взорвались одновременно, с минимальной стоимостью.

Формат входных данных

Все числа во входных данных целые положительные. Пусть N обозначает количество точек соединения фитилей, M — количество взрывных устройств ($1 \le N + M \le 300\,000$). Точки соединения фитилей пронумерованы от 1 до N. Точка поджога находится в соединении номер 1. Взрывные устройства пронумерованы от N+1 до N+M.

Входные данные даны в следующем формате:

 $P_i, 1 \leq P_i < i$, обозначает точку соединения фитилей, к которой проведен фитиль от точки соединения или взрывного устройства номер i. C_i обозначает длину фитиля, который их соединяет $(1 \leq C_i \leq 10^9)$. В каждой точке соединения, кроме той, в которой расположена точка поджога, сходятся хотя бы 2 фитиля. С каждым взрывным устройством соединен ровно 1 фитиль.

Формат выходных данных

Выведите минимальную стоимость изменения длин фитилей, после которого все взрывные устройства взорвутся одновременно.

стандартный ввод	стандартный вывод
4 6	5
1 5	
2 5	
2 8	
3 3	
3 2	
3 3	
2 9	
4 4	
4 3	

Задача F. CookieClicker

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Костя играет в компьютерную игру Cookie Clicker, основная цель которой — накопление запасов печенья. Получать печенья можно с помощью различных *строений*: можно просто кликать по специальному полю на экране, получая печенья за клики, можно купить фабрику печеньев, алхимическую лабораторию, машину времени, и все это будет приносить много-много печеньев.

В начале игры (момент времени 0) у Кости есть 0 печеньев и ни одного строения. На его выбор доступно n строений: i-ое строение стоит c_i печеньев и в конце каждой секунды приносит v_i печеньев. Кроме того, чтобы играть было еще интереснее, Костя решил поставить себе ограничение: в каждый момент времени он будет использовать только одно строение. Разумеется, он может по своему усмотрению менять активное строение каждую секунду.

Важно, что в версии игры, в которую играет Костя, покупать новые строения и менять активное строение можно только в моменты времени, кратные одной секунде. В один момент времени Костя может купить новое строение и тут же начать его использовать. Если Костя начал использовать строение в момент времени t, то первую прибыль оно сможет принести лишь в момент времени t+1.

Костя хочет заработать не менее s печеньев как можно быстрее. Определите, за сколько секунд он сможет это сделать.

Формат входных данных

В первой строке находятся два целых числа n и s ($1 \le n \le 2 \cdot 10^5$, $1 \le s \le 10^{16}$) — количество строений в игре и количество печеньев, которое Костя хочет заработать.

В каждой из следующих n строк записано два целых числа v_i и c_i ($1 \le v_i \le 10^8$, $0 \le c_i \le 10^8$) — количество печеньев, которое приносит i-ое строение за одну секунду, и стоимость этого строения.

Формат выходных данных

Выведите единственное целое число — минимальное количество секунд, за которое Костя сможет заработать не менее s печеньев. Гарантируется, что он может это сделать.

стандартный ввод	стандартный вывод
3 9	6
1 0	
2 3	
5 4	
3 6	5
1 0	
2 2	
5 4	
3 13	7
1 0	
2 2	
6 5	
1 1000000000000000	1000000000000000
1 0	

Задача G. Задача на дп

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Изначально у вас есть число X, изначально равное 0. Вы хотите получить из него число N, используя следующие операции:

- \bullet Умножить X на 2, заплатив A монет.
- \bullet Умножить X на 3, заплатив B монет.
- ullet Умножить X на 5, заплатив C монет.
- ullet Увеличить или уменьшить X на 1, заплатив D монет.

Какое наименьшее число монет вам нужно потратить, чтобы сделать X равным N.

Формат входных данных

В первой строке задано целое число $T \ (1 \leqslant T \leqslant 10)$ — число тестов.

В каждой из следующих T строк задано по 5 целых чисел N,A,B,C,D (1 $\leqslant N \leqslant 10^{18},$ $1 \leqslant A,B,C,D \leqslant 10^9$).

Формат выходных данных

Для каждого теста выведите ответ в отдельной строке.

стандартный ввод	стандартный вывод
5	20
11 1 2 4 8	19
11 1 2 2 8	26
32 10 8 5 4	3821859835
29384293847243 454353412 332423423 93492 3894 1 2 58666	
90000000000000000 332423423 454353412	934923490 987654321