День #6, название ДОЛ Электроник, где-то под Костромой, 4 июля 2017

Содержание

Задачи	2
Задача 6A. Суффиксное дерево [1 sec, 256 mb]	2
Задача 6В. Ненокку [1 sec, 256 mb]	3
Задача 6С. Рефрен [1 sec, 256 mb]	4
Бонусные задачи	5
Задача 6D. Подстроки-4 [1 sec, 256 mb]	5

В некоторых задачах большой ввод и вывод. Пользуйтесь быстрым вводом-выводом.

В некоторых задачах нужен STL, который активно использует динамическую память (set-ы, map-ы) переопределение стандартного аллокатора ускорит вашу программу.

Задачи

Задача 6A. Суффиксное дерево [1 sec, 256 mb]

Дана строка s. Постройте сжатое суффиксное дерево для строки s и выведите его. Найдите такое дерево, которое содержит минимальное количество вершин.

Формат входных данных

В первой строке записана строка s ($1 \le |s| \le 10^5$), последний символ строки доллар «\$», остальные символы строки маленькие латинские буквы.

Формат выходных данных

Пронумеруйте вершины дерева от 0 до n-1 в порядке обхода в глубину, обходя поддеревья в порядке лексикографической сортировки исходящих из вершины рёбер. Используйтся ASCII-коды символов для определения их порядка.

В первой строке выведите число n – количество вершин дерева. В следующих n-1 строках выведите описание вершин дерева, кроме корня, в порядке увелечения их номеров.

Описание вершины дерева v состоит из трёх целых чисел: p, lf, rf, где p ($0 \le p \le n, p \ne v$) — номер родителя текущей вершины. На ребер ведущем из p в v написана подстрока s[lf..rf) ($0 \le lf < rf \le |s|$).

Примеры

stdin	stdout
aaa\$	7
	0 3 4
	0 0 1
	2 3 4
	2 1 2
	4 3 4
	4 2 4
b\$	3
	0 1 2
	0 0 2
ababa\$	10
	0 5 6
	0 0 1
	2 5 6
	2 1 3
	4 5 6
	4 3 6
	0 1 3
	7 5 6
	7 3 6

Задача 6В. Ненокку [1 sec, 256 mb]

Очень известный автор не менее известной книги решил написать продолжение своего произведения. Он писал все свои книги на компьютере, подключенном к интернету. Из-за такой неосторожности мальчику Ненокку удалось получить доступ к еще ненаписанной книге. Каждый вечер мальчик залазил на компьютер писателя и записывал на свой компьютер новые записи. Ненокку, записав на свой компьютер очередную главу, заинтересовался, а использовал ли хоть раз писатель слово "книга". Но он не любит читать книги (он лучше полазает в интернете), и поэтому он просит вас узнать есть ли то или иное слово в тексте произведения. Но естественно его интересует не только одно слово, а достаточно много.

Формат входных данных

В каждой строчке входного файла записано одна из двух записей.

- 1. ? <слово> (<слово> это набор не более 50 латинских символов);
- 2. A <текст> (<текст> это набор не более 10^5 латинских символов).
- 1 означает просьбу проверить существование подстроки <слово> в произведение.
- 2 означает добавление в произведение <текст>.

Писатель только начал работать над произведением, поэтому он не мог написать более 10^5 символов. Суммарная длина всех запросов не превосходит 15 мегабайт плюс 12140 байт.

Формат выходных данных

Выведите на каждую строчку типа 1 "YES", если существует подстрока <слово>, и "NO" в противном случае. Не следует различать регистр букв.

Пример

stdin	stdout
? love	NO
? is	NO
A Loveis	YES
? love	NO
? WHO	YES
A Whoareyou	
? is	

День #6, название ДОЛ Электроник, где-то под Костромой, 4 июля 2017

Задача 6С. Рефрен [1 sec, 256 mb]

Рассмотрим последовательность n целых чисел от 1 до m. Подпоследовательность подряд идущих чисел называется $pe\phi peнom$, если произведение ее длины на количество вхождений в последовательность максимально.

По заданной последовательности требуется найти ее рефрен.

Формат входных данных

Первая строка содержит два целых числа: n и m ($1 \le n \le 150\,000, 1 \le m \le 10$). Вторая строка содержит n целых чисел от 1 до m.

Формат выходных данных

Первая строка выходного файла должна содержать произведение длины рефрена на количество ее вхождений. Вторая строка должна содержать длину рефрена. Третья строка должна содержать последовательность которая является рефреном.

Пример

stdin	stdout
9 3	9
1 2 1 2 1 3 1 2 1	3
	1 2 1

День #6, название ДОЛ Электроник, где-то под Костромой, 4 июля 2017

Бонусные задачи

Задача 6D. Подстроки-4 [1 sec, 256 mb]

Даны K строк из маленьких латинских букв. Найдите их наибольшую общую подстроку.

Формат входных данных

В первой строке число K ($1 \le K \le 10$). Далее K строк длины от 1 до $200\,000$.

Формат выходных данных

Наибольшая общая подстрока.

Примеры

stdin	stdout
3	cab
abacaba	
mycabarchive	
acabistrue	