Задача А. Обход в глубину

Имя входного файла: dfs.in
Имя выходного файла: dfs.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан неориентированный невзвешенный граф, в котором выделена вершина. Вам необходимо найти количество вершин, лежащих с ней в одной компоненте связности (включая саму выделенную вершину).

Формат входных данных

В первой строке входного файла содержатся два целых числа N и S ($1 \leqslant S \leqslant N \leqslant 100$), где N — количество вершин графа, а S — выделенная вершина. В следующих N строках записано по N чисел — матрица смежности графа, в которой цифра «0» означает отсутствие ребра между вершинами, а цифра «1» — его наличие. Гарантируется, что на главной диагонали матрицы всегда стоят нули.

Формат выходных данных

Выведите одно целое число — искомое количество вершин.

dfs.in	dfs.out
5 1	3
0 1 1 0 0	
1 0 1 0 0	
1 1 0 0 0	
0 0 0 0 1	
0 0 0 1 0	

Задача В. Компоненты связности

Имя входного файла: components.in Имя выходного файла: components.out

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дан неориентированный невзвешенный граф. Необходимо посчитать количество его компонент связности.

Формат входных данных

В первой строке входного файла содержится одно натуральное число N ($N \leq 100$) — количество вершин в графе. Далее в N строках по N чисел — матрица смежности графа: в i-й строке на j-м месте стоит «1», если вершины i и j соединены ребром, и «0», если ребра между ними нет. На главной диагонали матрицы стоят нули. Матрица симметрична относительно главной диагонали.

Формат выходных данных

Вывести одно целое число — искомое количество компонент связности графа.

components.in	components.out
6	3
0 1 1 0 0 0	
1 0 1 0 0 0	
1 1 0 0 0 0	
0 0 0 0 1 0	
0 0 0 1 0 0	
0 0 0 0 0	

Задача С. Есть ли цикл?

Имя входного файла: cycle.in
Имя выходного файла: cycle.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 64 мегабайта

Дан ориентированный граф. Требуется определить, есть ли в нем цикл.

Формат входных данных

В первой строке вводится натурально число N ($N \leq 50$) — количество вершин. Далее в N строках следуют по N чисел, каждое из которых — «0» или «1». j-е число в i-й строке равно «1» тогда и только тогда, когда существует ребро, идущее из i-й вершины в j-ю. Гарантируется, что на диагонали матрицы будут стоять нули.

Формат выходных данных

Выведите «0», если в заданном графе цикла нет, и «1», если он есть.

cycle.in	cycle.out
3	0
0 1 0	
0 0 1 0 0 0	
0 0 0	

Задача D. Кратчайшее расстояние

Имя входного файла: mindist.in Имя выходного файла: mindist.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Дан ориентированный граф. Найдите расстояния от вершины x до всех остальных вершин графа.

Формат входных данных

В первой строке входного файла содержатся два натуральных числа N и x ($1 \le N \le 1000$, $1 \le x \le N$) — количество вершин в графе и стартовая вершина соответственно. Далее в N строках по N чисел — матрица смежности графа: в i-й строке на j-м месте стоит «1», если вершины i и j соединены ребром, и «0», если ребра между ними нет. На главной диагонали матрицы стоят нули.

Формат выходных данных

Выведите через пробел числа $d_1, d_2, \dots d_n$, где d_i — это -1, если путей между x и i нет, и минимальное расстояние между x и i в противном случае.

mindist.in	mindist.out
6 5	2 2 1 1 0 -1
0 1 1 0 0 0	
1 0 0 0 0 0	
1 1 0 0 0 0	
0 0 0 0 1 0	
0 0 1 1 0 0	
0 1 0 0 0 0	

Задача Е. Кратчайший путь

Имя входного файла: mindist2.in
Имя выходного файла: mindist2.out
Ограничение по времени: 3 секунды
Ограничение по памяти: 64 мегабайта

Вам дан неориентированный граф. Найдите кратчайший путь от вершины a до вершины b.

Формат входных данных

В первой строке входного файла идут целые числа n и m ($1 \le n \le 50\,000$, $1 \le m \le 100\,000$) — количества вершин и рёбер соответственно. Во второй строке идут целые числа a и b — стартовая и конечная вершины соответственно. Далее идут m строк, описывающих рёбра.

Формат выходных данных

Если пути между a и b нет, выведите единственное число -1. Иначе выведите в первой строке число l — длину кратчайшего пути между этими двумя вершинами в рёбрах, а во второй строке выведите l+1 число — вершины этого пути.

mindist2.in	mindist2.out
4 5	2
1 4	1 2 4
1 3	
3 2	
2 4	
2 1	
2 3	
4 4	2
2 3	2 1 3
2 1	
2 4	
4 3	
1 3	

Задача F. Шайтан-машинка

Имя входного файла: crazycalc.in
Имя выходного файла: crazycalc.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

У Ибрагима есть магическая чёрная шайтан-машинка. На ней есть три кнопки и табло. Табло может показывать не более чем четырёхзначные числа. Каждая из кнопок меняет число некоторым образом: первая домножает его на 3, вторая прибавляет к нему сумму его цифр, а третья вычитает из него 2. В случае, если число становится отрицательным или превосходит $9\,999$, шайтан-машинка ломается. Ибрагим может нажимать кнопки в любом порядке. Он хочет узнать, как получить на табло число b после некоторой последовательности нажатий, если сейчас шайтан-машинка показывает a. Помогите ему найти минимальное необходимое число нажатий.

Формат входных данных

Единственная строка входного файла содержит два натуральных числа a и b, разделённых пробелом (1 $\leq a, b \leq 9$ 999).

Формат выходных данных

Выведите одно число — минимальное необходимое количество действий.

crazycalc.in	crazycalc.out
14 45	3
18 12	3
14 29	2

ЛКШ.2021.Июль.Параллель 1. День 11. DFS и BFS Судиславль, «Берендеевы поляны», 28.07.2021

Задача G. Удаление клеток

Имя входного файла: cell-delete.in Имя выходного файла: cell-delete.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Из прямоугольного листа клетчатой бумаги (M строк, N столбцов) удалили некоторые клетки. На сколько кусков распадётся оставшаяся часть листа? Две клетки не распадаются, если они имеют общую сторону.

Формат входных данных

В первой строке находятся числа M и N, в следующих M строках - по N символов. Если клетка не была вырезана, этому соответствует знак #, если вырезана - точка. $1 \leq M, N \leq 100$.

Формат выходных данных

Вывести одно число.

cell-delete.in	cell-delete.out
5 10	5
#######.	
.#.#.#	
#####.#.	
###	
.###.#####	