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1 INTRODUCTION

In 1971, Cook proved the first NPC, the 3SAT problem [1]. Since then, “is NP equal to P?” as a great
problem has caused a lot of interest and arguments. At present, most well-known authorities in
this area tend to think that NP is not equal to P [2, 3]. It is absolutely certain that the authorities
have no strong basis for this view, but this view seems to have been tacitly accepted by most
people.

As aresult, various academic papers often talk about NP, especially NPC, directly declaring that
there can be no polynomial time algorithm. Such acquiescence is undoubtedly harmful.

Why do some experts always like to assert something? How many experts have asserted some-
thing in the past and later these assertions have been disproven by new achievements?

Also, there are famous scientists agreeing that NP = P. Hilbert, a great mathematician of the
20th century, has a famous saying: “we must know; we will know.” It can be seen that Hilbert
essentially agreed that NP equals P. Many mathematical problems in human history, including
Hilbert’s famous 23 mathematical problems, are constantly being solved. Isn’t it a confirmation
that NP equals P?
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15:2 L. Du

From the heuristic point of view, any NPC problem can be reduced to any other NPC problem
in polynomial time. That is to say, every distance between two NPC problems is polynomial. The
fact itself strongly shows that NP problems have a unified solution law and difficulty, and their
solution difficulty should be polynomial order of magnitude. The difference of an attribute value
between any group of individuals in the objective world is usually in the same order of magnitude
as the absolute value of an individual attribute. For example, one adult weighs 100 pounds, and the
difference between a very fat man and a very thin man is also 100 pounds. Similarly, the weight of
an ant is in grams, and the difference between a big ant and a small ant is also in grams. Of course,
these are not strictly proven conclusions.

We develop a polynomial time algorithm for 3SAT. The insights of this article are based on
the following concepts and methods: the checking tree, long path, direct contradiction pair, indi-
rect contradiction pair, additional contradiction pair, contradiction property, two-unit layer and
three-unit layer. We successfully transform solving a 3SAT problem to solving 2SAT problems in
polynomial time. The keys are as follows: the additional contradiction pair’s two properties and
the proofs for Lemma 1 to Lemma 4 and Corollary 1 based on the two properties.

2 ALGORITHM AND PROOF

A 3SAT contains n variables and m clauses. Each clause contains three variables. We call each of
them a unit (we call it a unit and not a literal due to the fact that we treat each one as a different
one and that the algorithm is not limited in 3SAT). Thus, there are 3m units in all of the clauses.
Now, we change this 3SAT to a path-finding problem. There are m+1 cities: ¢, ¢y, . . . ¢y. From ¢
toci+1 (i =0, 1,... m—1), there are 3 different roads. We call each road a unit. Thus, there are 3m
units. Now, we want to find a path from ¢ by cy, ... cm—1 to cn. We call such a path a long path.
There are 3™ different possible long paths. A long path contains m units. However, a lot of two
units have contradictions. These two units cannot be in the same path. Apparently, any two units
of the 3roads from ¢; to ¢;+; (i = 0, 1,...m—-1) cannot be in the same path. There are a lot of other
two units that cannot be in the same path. For any two units, we know they have or do not have
contradictions (in 3SAT, a variable x and —x have contradictions). The question now is how to find
a long path from ¢y to cp.

If two units have contradictions, we say that one unit destroys the other one.

If a unit destroys all of its 3 possible sons, we delete this unit. Thus, we suppose that each unit
cannot destroy all of its 3 possible sons, that is, it does not destroy or only destroys one of them.

Suppose that from city ¢, to ¢;, the 3roads are ay1, ai2, a3, from ¢ to ¢, they are a1, azs, azs, . . .,
and from c;,—; to ¢y, they are a,,1, amz, dms.

The checking tree contains three roots aj;, ai2, and a;3. The roots are in layer 0. We say layer
0 is the highest layer or the first layer in the tree. az;, az, a3 are in layer 1 and then as;, asz, ass
are in layer 2. Layer 1 is higher than layer 2, and so on. In each layer, the three units are brother
units and are brothers of each other.

There are m clauses, each clause containing three units. Thus, in the checking tree, finally, there
are m layers and each layer contains at most three units. A layer is versus a clause. All units are
3m. We call a lower layer a descendant layer of a higher layer. Also, the latter is the ancestor of
the former.

A checking tree contains i layers. Each layer contains three possible units. Each time, we
add one layer’s units to the checking tree, one by one. We first add the first layer’s three units
a1, a2, a1z one by one. Then, we add az1, azs, azs, and so on. We call the layer we currently calcu-
late the current layer. The current layer’s three units are a;1, a;2, aj3(i > 2). We call a path from
any one unit of the current layer to any one unit of a;1, a12, a3 the current long path. Each layer
has one unit in this path and all units in this path do not have contradictions.
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If all possible current long paths do not contain a unit u, we call u an utterly destroyed unit.
It will always be an utterly destroyed unit later.

If two units u; and u; are the same variable, but one is positive and the other one is negative, we
say that u; directly destroys u; (also u; destroys u). If any one current long path cannot contain
both u; and u; at the same time, we say that u; indirectly destroys (if does not directly destroy)
up. For both cases, we also say that one destroys the other one. If u; destroys u,, it will always
destroy u, later.

Each time, we add one layer and then calculate. We add and calculate each unit of this layer
one by one. We call it the new added unit. For each layer, we have to calculate all possible new
utterly destroyed units. For every unit pair—that is, for any two units in different layers—we have
to calculate whether one indirectly destroys the other one. For a unit pair, if one destroys the other
one, we call it a contradiction unit pair or a contradiction pair. For direct destroying, it is a
direct contradiction pair and for indirect destroying, it is an indirect contradiction pair.

In the checking tree, for k consecutive layers, we take one unit from each layer. If they do not
destroy each other, we call these k units a part path, or a path. In any part path, any two units
cannot have contradictions.

Thus, a checking tree contains i layers. Each layer contains at most three units. If a unit is an
utterly destroyed unit, we do not keep it in the checking tree. For the checking tree, we have to
remember all utterly destroyed units and all indirect contradiction unit pairs.

Now, the current layer is the ith layer. Its three units are a;1, a;2, a;3. We have got all utterly
destroyed units and all contradiction unit pairs. We now add and calculate the i+ Ith layer. Its three
units are a;+11, di+12, di+13. We add each one to the checking tree, respectively. We first add the
unit a;;1; to the checking tree.

Now, the old utterly destroyed units are still utterly destroyed units and the old contradiction
unit pairs are also contradiction unit pairs. We have to calculate the new utterly destroyed units
and the new indirect contradiction unit pairs after the a;,1; is added.

In the first layer (highest layer), there are three units and there are also three units in the low-
est layer. Thus, there are 9 (3 times 3) kinds of long unit paths, or long paths (current long
paths). Some of them may be destroyed. For each kind of long path, we calculate each unit pair
and remember whether there is a path of this kind that contains the unit pair, that is, whether
one unit destroys the other one for this long path. Any consecutive part of a long path is a part
path.

If the checking tree does not contain a unit that is the same variable as a;,1; but with a different
sign, that is, if ;11 is the variable v, any other unit is not the variable —v, then there are no new
utterly destroyed units and no new contradiction unit pairs (for a;1;). If the checking tree contains
that unit, then for a new long path that contains a;411, any unit whose variable is —v cannot be in
this path.

If a layer contains only one unit (others are destroyed and deleted), we call it a one-unit layer.
In this way, we have a two-unit layer, three-unit layer and zero-unit layer. We only consider
two-unit layers and three-unit layers, so we call all layers which contains two units or one unit
two-unit layers. Other layers are three-unit layers.

2.1 Algorithm 1: Calculating New Contradiction Pairs

We want to calculate new contradiction pairs after we add a new unit to the checking tree. Suppose
that the new added unit is aj;1; and its variable is v.

Now, we copy the checking tree to a temporary checking tree and we will delete some units in
the temporary checking tree. For Algorithm 1, we need the temporary checking tree.
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For two units x and y, the unit pair x and y is not a contradiction pair before a;.1; is added.
Uy, Uy, us are three units in a layer. u; is the variable —v. We now want to know whether x, y can
be in the same long path again after we delete all of the —v. Suppose that x, y and u; are in the
same old long path. This algorithm calculates whether x and y are a new contradiction pair after
ai+11 is added. For each unit pair that is not a contradiction pair before a;4; is added, we apply
this algorithm one time.

For the temporary checking tree, we delete the layer that contains x and the layer that contains
y. We find all layers that contain —x and delete all —x. We call these layers the first kind of lay-
ers. We find all layers that contain -y and delete all —y. We call these layers the second kind of
layers. We find all layers that contain —v and delete all —v. We call these layers the third kind of
layers. We call all of the three kinds of layers two-unit layers. They may contain one-unit layers.
Then, we do 2SAT for the three kinds of layers. We have to get these kinds of part path only in the
three kinds of layers: any two units in the part path are a unit pair that do not destroy each other
for a long path, that is, the two units can be in this long path at the same time. In each two-unit
layer, there is one unit in this part path. We call this part path a 2SAT path and call this property
the 2SAT path property. If we cannot get such a 2SAT path, x and y destroy each other and we
end this algorithm.

Now, we add each three-unit layer to the bottom of the two-unit layers and then calculate the
2SAT, respectively. Because there is only one three-unit layer, this does not affect the 2SAT calcu-
lation in polynomial time. In this calculation, each unit of a three-unit layer must be in at least one
2SAT path that has the 2SAT path property. Otherwise, we delete this unit temporarily. If some
units in a three-unit layer are deleted, then we put this layer in the two-unit layers. If we cannot
get such a 2SAT path, x destroys y and we end this algorithm. In the two-unit layers, each unit
pair in a 25AT path must be always in a 2SAT path when we add every three-unit layer, that is,
if when we add one three-unit layer, we cannot find such a 2SAT path that contains this unit pair
and when we add another three-unit layer, there is such a 2SAT path that contains the pair, then
we do not think it is a useful 2SAT path. For each three-unit layer, there is at least one unit which
is in the same 2SAT path with such a unit pair. We call all of these the three-unit layer property.
Thus, for any one three-unit layer, if a unit pair cannot be in a 2SAT path with any one of the
three units in this layer, we call this unit pair an additional contradiction unit pair or an addi-
tional contradiction pair. For any three-unit layer, a 2SAT path cannot contain an additional
contradiction pair.

Thus, a 2SAT path cannot contain any one direct contradiction pair, indirect contradiction
pair, or additional contradiction pair. We call this the contradiction property, including di-
rect contradiction property, indirect contradiction property, and additional contradiction
property.

We call a unit pair that is not a contradiction pair a useful pair, that is, for any two units, if
each three-unit layer has at least one 2SAT path that contains these two units, we call the two
units a useful pair. For a unit’s 2SAT path, if any two units in it are a useful pair, we call it a
useful 2SAT path. In this algorithm, every 2SAT path must be a useful 2SAT path.

When we put a three-unit layer to the two-unit layers to calculate, we call all 2SAT paths that
contain one unit of the three-unit layer this unit’s 2SAT paths (or this unit has these 2SAT
paths) and call all the 2SAT paths of the three units together this three-unit layer’s 2SAT paths
(or this layer has these 2SAT paths).

Finally, if each three-unit layer has at least one useful 2SAT path, then any two layers’ useful
2SAT paths contain the same useful pairs, that is, for each unit pair in any one 2SAT path of a
three-unit layer, we always can find a 2SAT path of any other one three-unit layer, which also
contains the unit pair.
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For the additional contradiction pair, we have two properties:

Property 1. Considering two units in the two-unit layers that are not a direct contradiction pair
or an indirect contradiction pair. If there is one (or more) three-unit layer that does not have a
2SAT path containing the two units, we call the two units an additional contradiction pair. In a
useful 2SAT path, any two units in it can be in the same long path and cannot be an additional
contradiction pair. Also, for a unit #'s 2SAT paths, the unit pair t with any one unit in these 2SAT
paths can be in the same long path.

Property 2. Considering a unit pair in two-unit layers that is not a contradiction pair, that is,
which is a useful pair. For each unit in three-unit layers, we remember whether this unit has a
2SAT path containing the unit pair. Then, for calculating a unit #’s one useful 2SAT path, it cannot
contain any contradiction pair. Also, we have to check every other old three-unit layer whose 2SAT
paths have been calculated. Considering a unit pair p in the 2SAT path, if in another three-unit
layer, each unit that has the 2SAT paths to contain the unit pair p destroys u, that is, this unit
and u are a direct or indirect contradiction pair, then for the unit u, p is not a useful pair, that
is, u’s useful 25AT paths cannot contain p. Of course, after calculating this layer, if there are new
additional contradiction pairs, we have to check and calculate each old three-unit layer’s 25AT
paths again.

Finally, we can determine that x and y do not destroy each other, that is, they are a unit pair that
can be in the same long path.

We now prove why this algorithm is correct.

First, we define some concepts to be used in the following lemmas and proofs. Let p; and p, be
two part paths in the same two-unit layers. The two units in a two-unit layer are brother units.
The brother unit of each unit in p; is in p, and vice versa. We call p;, p, two brother part paths
in some two-unit layers. p; and p, are also two brother part paths in some two-unit layers—so
are ps and ps. These layers are all the two-unit layers. (We suppose the two-unit layers are more
than 5. If they are less than 5, we can calculate all 2SAT paths in the two-unit layers. Then, each
time, we check one path for each of the three-unit layers.) t, t;, t3 are three units in a three-unit
layer—say, layer 1. So are 14, t35, ts (layer 2), t7, ts, to (layer 3), and ty¢, t11, t12 (layer 4). Each time,
we add one three-unit layer to the two-unit layers to calculate 2SAT paths.

LEMMA 1. For two three-unit layers, layer 1 and layer 2, if t; has a useful 2SAT path p and t;
destroys t4, then at least one unit of t5 and ts must also have the 2SAT path p and must not destroy
t;. When t; has a useful 25AT path p, there are two ways to let layer 2’s 2SAT paths contain all unit
pairs in p: (1) one unit in layer 2 also has this 2SAT path and does not destroy t;; and (2) we separate
this 2SAT path into three parts—each of t;’s, t5’s, and ts’s one 2SAT path contains different two of the
three parts and t; does not destroy ty, t5, and ts. Recursively, in order to let a unit’s 2SAT paths contain
all unit pairs in a part path, we can separate the part path into three parts so that each of the unit’s
three 2SAT paths contain different two of the three parts.

Proor. First, if #; also destroys t5, then #; must have the 2SAT path p and must not destroy .
By the property 2, #; cannot also destroy t; otherwise, t; cannot have a useful 2SAT path. Also,
any unit pair in p must be in #’s 2SAT paths. Thus, the lemma holds. If #; destroys only #,, then all
unit pairs in p must be in the 2SAT paths of t5 and f. If both 5 and #; destroy some units in p, then
some unit pairs in p cannot be in the 2SAT paths of #5 and #;. Thus, at least one of t5 and 5 cannot
destroy any unit in p. If layer 2 does not have the 2SAT path p, then the only way that layer 2’s
2SAT paths contain all unit pairs in p is as follows: we separate this 2SAT path p into three parts,
each of t4’s, t5’s, and #5’s one 2SAT path contains different two parts and #; does not destroy 14, ts,
and ;. Thus, the lemma holds. O
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LEMMA 2. If't; has a useful 2SAT path p;psps, in order to let layer 2°s 2SAT paths contain all unit
pairs in p1psps, there are three possible kinds: kind 1—one (or more) unit in layer 2 also has the 2SAT
path pipsps and does not destroy t;; kind 2—t; does not destroy any one of t4, ts, ts, and t; destroys
at least two of the three part paths p,, ps, ps or t; does not destroy any one of pa, pa, ps; kind 3—t;
does not destroy any one of ty, t5, and ts, and t; destroys only one of the three part paths p,, pa, ps.
For kind 2, layer 2 and layer 1 must have at least the same one 2SAT path. Also, for different layers,
we have the same case property for kind 2 as stated as follows.

Proor. We prove only kind 2. For kind 3, it may lead to an exceptional case that is very special,
which we will discuss in Lemma 4. ]

We discuss kind 2 in several cases.
We first suppose that t; destroys p,, ps, and ps and layer 1 does not have the 2SAT path p, ps ps.

Case 1: Now we suppose that #;’s one 2SAT path is p;psps. In order to let layer 2 not have such a
2SAT path but contain all of the unit pairs in this path, one way is t;’s 2SAT path p,psps (24 destroys
p1), t5°s 2SAT path p; paps (15 destroys ps), and t;’s 2SAT path p; psps (ts destroys ps).

Now, t; destroy some units (for convenience, suppose that it destroys all units) in p,, in ps, and
in pg. t; and t3 cannot destroy units in p, and ps or ps because, if so, layer 1’s 2SAT paths cannot
contain such a unit pair whose one unit is in p, and the other one is in py or pg. In order to let layer
1 not have the same 2SAT path p.ps;ps but contain the unit pairs one in p; and one in psps, one
way is f; has the 2SAT path pspep, and t3 has pspsp,. In order to let layer 1’s 25AT paths contain
unit pairs in p;ps and in p; p, t; and t3 cannot destroy p;.

In order to let layer 2’s 2SAT paths contain unit pairs that #’s and t3’s 2SAT paths con-
tain, t5’s and f’s 2SAT paths must contain p, or part of p, (or t;’s 2SAT paths contain py,
ps)- In this case, suppose that they contain p,. Then, both layers would have the 2SAT paths
P2paps, P2p3Pss P1PapPss P1P3Ps-

Case 2: When we said that t; has the 2SAT path p; psps and t3 also has this 2SAT path, it means
that #5 and t3 do not destroy units in p; psps, but p; psps may not be a 2SAT path. Thus, by Lemma 1,
t5 or t; may have three or more 2SAT paths containing all unit pairs in p; psps. Note that t5’s
such 2SAT paths must be the same as #3’s such 2SAT paths. This is because we suppose that
t5 destroys ps and it does not have the 2SAT path p; ps ps, but #5’s 2SAT paths must contain all unit
pairs in p; ps; thus, t5 cannot destroy py. If p;pyps is not a 2SAT path, by Lemma 1, we can separate
p1ps into three parts and each of 5’s three 2SAT paths contain different two of the three parts
together with p,s. Based on the above two properties, #5 also has these three 2SAT paths.

Case 3: If 1, and t3 destroy some units in ps, in order to let their 2SAT paths contain every unit
pair of which one unit is in p, and the other in psps, #, and t; must have the 2SAT paths p,1p12p3ps
and p11 p22psps, respectively. Considering t5’s and t5’s 2SAT paths, t, and t3 must not destroy pa,
ps- Also, t5 and t, cannot destroy p,. Thus, t; and t; must also have the 2SAT paths pa1 p12paps and
DP11P22ps Pe, respectively. £, and t; also have the two 2SAT paths. P;; and p;, together is p;. Py and
pao together is py. p1; and py; are brother part paths, as are p;2 and psy.

Case 4: In order to let layer 2 not have the 2SAT path p; psps but contain all the unit pairs in
this path, another way is as follows: t;’s 2SAT path po1p12psps (t4 destroys piq), t5’s 2SAT path
P1Pa1psaps (ts destroys psp) and t5’s 2SAT path ppspeaps1 (I destroys psz). ps; and psp together is
ps. pa1 and pyy together is py. ps; and ps; together is ps. pe; and pgz together is pg. p3; and py; are
brother part paths, as are ps; and pas, ps; and pe1, ps2 and pe2. In order to let layer 1 not have the
same 2SAT path po; p12psps but contain the unit pairs that the path contains, one way is as follows:
t, has the 2SAT path pspepo1p12 and t3 has pspspo1p12- In order to let layer 1’s 2SAT paths contain
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unit pairs in p; py; and in p; pes, t, and t; cannot destroy p;. Also, £, cannot destroy py, ps; and #3
cannot destroy ps,, ps2- Then, the two layers have the same 2SAT paths: p1paips2ps. P1PsPe2Ps1-

Case 5: for this case, we consider three three-unit layers layer 1, layer 2 and layer 3. For more
than three three-unit layers, we can separate them into three sets: set 1 is like layer 1, set 2 is like
layer 2 and set 3 is like layer 3. Suppose t; has the useful 2SAT path p; p3ps. t4 also has this useful
2SAT path and t4 does not destroy t;. t; destroys #; and t; destroys t3. t; and #5 do not destroy any
unit in p; psps, but they do not have the useful 2SAT path p;psps. In order to let the useful 2SAT
paths of t; and ty contain all unit pairs in p; psps, the way is: t; has two useful 2SAT paths p,psps
and p; pspe. to has a useful 2SAT path p; psps. Because t; destroys ty, t, or 3 must have the 25AT
paths popsps and pr psps. If £, has the useful 2SAT paths p,psps and p; ps ps, then t, and t; must also
have the useful 2SAT path p; p3ps. Anyway, for this case, we also can get that each 3 unit layer has
at least the same one 2SAT path (also see the proof of lemma 3).

We now explain why this lemma holds. We consider only case 1 and case 3. Other all possible
cases are logically the same. In order to let layer 2 not have the 2SAT path p; psps but contain all
the unit pairs in this path, there are two different ways: case 1 and case 4. We explain only case 1.
Case 4 is in the same logic. In order to let layer 1 not have the same 2SAT path p,psps but contain
the unit pairs one in p, and one in psps, there are two different ways: case 1 and case 3. For case
1, in order to let layer 1’s 2SAT paths contain unit pairs in p; ps and p; pe, t2 and #; cannot destroy
p1. For case 3, because p; is separated into two parts in #;’s and t3’s 2SAT paths and so is p,, in
order to let layer 1’s 2SAT paths contain unit pairs in #;5’s and f5’s 2SAT paths, both t, and #; cannot
destroy pa, pe. Also, t5’s and t5’s 2SAT paths must contain unit pairs in paps and in psps. Then, for
the two different cases, two layers must have the same 2SAT paths.

Note that for the above four cases, we suppose that #; destroys p,, ps and ps and then the two
layers have the same two 2SAT paths. If t; only destroys p,, ps, in the same way, we can see that
the two layers have at least the same one 2SAT path. We suppose that layer 1 does not have the
2SAT path p,psps. In the same way, we also can suppose that layer 1 does not have the 2SAT path
P1paps or p1psps. If ¢ does not destroy any one of p,, ps, ps, ti would have the 2SAT paths that layer
2 has. We call such a layer an unaffected layer.

We now suppose that #; in layer 3 also has the 2SAT path p, p3ps. We consider layer 3 and layer 2.
Note that for kind 2, in order to let all unit pairs in any one three-unit layer’s useful 2SAT paths
are also contained in each other layer’s 2SAT paths, when layer 1 and layer 2 is in any case of the
above cases, layer 3 and layer 2 must also in the same case (except the unaffected layer). We call
this the same case property. For different layers, the same case property is the key.

LEMMA 3. For k (k >= 2) three-unit layers, if each layer has the useful 2SAT path p, then there is a
part path in the k layers (i.e., the part path contain k units which do not destroy each other and each
unit is in each of the k layers) and each unit in the part path has the same one 2SAT path (may or
may not be the same as p).

Proor. Let ppsps and papaps be the two-unit layers. p; and p, are brother part paths. So are ps
and py as well as ps and ps. We call p; psps the first kind 2SAT path and units in this path are the
first kind units. We call papsps the second kind 2SAT path and units in this path are the second
kind units. Any one unit in the first kind 2SAT path has a brother unit in the second kind 2SAT
path. The two brother units are in the same layer. Any one part path of the first kind 2SAT path
has a brother part path in the second kind 2SAT path. The three-unit layers have k layers and each
layer contains three units: the first one, the second one and the third one. #; is a unit in a three-unit
layer.

Suppose that #; has the first kind 2SAT path and #;’s 2SAT paths also contain p, (only p,, i.e.,
they do not contain other units in the second kind 2SAT path. Suppose that any other unit which
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has the first kind 2SAT path has the 2SAT paths which contain p, (only p,), or, contain p, (or part
of py, or non of p;) and some other units in the second kind 2SAT path.

Now if there is a long path which contains #; and which only contains such units in three-unit
layers each of these units has the first kind 2SAT path, this means that the units which are in the
long path and also in the three-unit layers have the same one 2SAT path, the first kind 2SAT path.

If there is a long path which contains #; and also contains some units that do not have the first
kind 2SAT path and for each of such units, its 2SAT paths do not contain such units which are in
the second kind 2SAT path but are not in p,, and also each of such units has the same one 25AT
path, then the units in the long path and also in the 3 unit layers have the same one 2SAT path.

If each of all long paths which contains #; contains one (or more) unit which does not have the
first kind 2SAT path and whose 25AT paths always contain a unit v in the second kind 2SAT path
which is not in p, (we suppose the 2SAT paths do not contain the unit v’s brother unit), this case
does not fulfil the rule: the two units #; with any one unit in the first kind 2SAT path can be in the
same long path. So this case cannot happen.

Suppose that there are two long paths. One contains #; and t;, the other one contains #; and #.
t; and ty are two units in three-unit layers. ti and t; do not have the first kind 2SAT path. t;’s 2SAT
paths contain py; (part of ps) and #’s 2SAT paths contain ps; (part of pg). They do not contain
other units in the second 2SAT paths. Considering these two long paths, we can see it is possible
that the unit pair of #; with any one unit in the first kind 2SAT path can be in the same long path.

Then in order to let each layer’s 2SAT paths contain the unit pairs related to py; and pe; (i-e.,
at least one unit of each pair is in ps; or pg;), each layer’s 2SAT paths must contain py; and pe;.
Please note: we cannot separate py; (or pe;) into three parts and let each part (suppose that their
brother units are not in) be in three different unit’s 2SAT paths, because if so, for the above two
long paths, we cannot get that: the unit pair #; with any one unit in the first kind 2SAT path can
be in the same long path. Thus in each 3 unit layer, at least one unit’s 2SAT paths contain p4; and
at least one unit’s 2SAT paths contain pg;. If one unit’s 2SAT paths contain both p4; and pg, they
must also contain the brother part path of p4; and the brother part path of pe;.

We can suppose that each 25AT path does not contain both ps; and p4; together and that pg; or
pa1 does not separate into three parts in three different 2SAT paths. If a 2SAT path contains both
pe1 and pyg; (or part of pg; or pyp), each layer’s 2SAT paths must also contain unit pairs in it and
then we still can prove in the same way as following.

Now for each three-unit layer, at least one unit’s 2SAT paths contain ps; and another one unit’s
2SAT paths contain p4;. If for each layer, only one unit’s 2SAT paths contain ps; and another one
unit’s 25AT paths contain py;, then any two units whose 2SAT paths contain pg; must not destroy
each other. So we can get one part path for all three-unit layers in which each unit is in each
different layer of the three-unit layers and each unit has the same 2SAT path which contains pe;.

If in some layers, two units’ 2SAT paths contain ps; and the third one unit’s 2SAT paths contain
pa1, then we still can get a part path in which each unit has the same 2SAT path which contains
pa1. We also can get a part path in which each unit has the same 2SAT path which contains pe;,
because if not so, then for a unit x whose 2SAT paths contain ps;, each long path which contains
x must contain such a unit whose 2SAT path contains p4;, then we cannot get that every unit pair
of x and one unit in the 2SAT path which contains ps; can be in the same long path. We call these
the property of a part path with the same 2SAT path.

Please note: the case 5 in lemma 2 does not affect this proof, because in case 5, u; and ug do not
destroy any unit in p; psps, i.e., u; or ug with any one unit in p; psps can be in the same long path.

In the same way, for all other possible cases, we still can get this result. ]

COROLLARY 1. Ifwithout the exceptional case caused by kind 3 in Lemma 2, for all three-unit layers,
if they have useful 2SAT paths, then there is a part path in all three-unit layers (i.e., each unit of the
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part path is exactly in each of all three-unit layers and they do not destroy each other) and each unit
in the part path has the same one 2SAT path.

Proor. We prove it by induction. Suppose that for r (r > 2) layers, the corollary holds. We call
these rlayers holding layers and call the part path in these layers the holding part path. Each time,
we add one other layer /; in the three-unit layers to the holding layers. Each time we consider two
layers, one is in the holding layers and one is /;. By Lemma 2 and by the same case property in
Lemma 2, we can immediately get that for r+1 layers, each layer has at least the same one 2SAT
path. Then, by Lemma 3, the corollary also holds. O

LEMMA 4. For the kind 3 in Lemma 2, it may lead to an exceptional case. For this case, even if each
three-unit layer has one or more useful 2SAT paths, we still may not get a long path. This is a very
special case. We can solve this case in polynomial time.

Proor. Let ajy, a; be in the same two-unit layer and by, b, be in the same two-unit layer. p; and
p2 are brother part paths in two-unit layers. p; and p4 are also two brother part paths in two-unit
layers, as are p; and pg. These layers are all two-unit layers. #;, t;, t3 are three units in a three-unit
layer—say, layer 1. So are t4, 5, t; (layer 2), t7, t3, to (layer 3), and ty, t11, t12 (layer 4). |

Each time, we add one three-unit layer to the two-unit layers to calculate 2SAT paths. Let ay,
b1, p1, ps, ps be a 2SAT path of #;. It is layer 1’s one 2SAT path. We analyze the exceptional case.

Suppose that t;’s 2SAT path is a;bipipsps, t2°’s 2SAT path is a1bipopaps, ta’s 2SAT path is
arbipipaps, and t5’s 2SATpath is ay by papsps, but t3 and ; destroy a;, b;. Each 2SAT path of t3
and f, contains ap, b, and does not contain a;, b;. Each 2SAT path of ty and #, contains a;, by
and does not contain a,, by. Suppose t;’s 2SAT path aybopipaps, ts azbapapsps, tio azbapipsps, and
t11 azbapapaps. ts, s, to, tiz contain all needed useful pairs (units in p; to pg) so that each unit pair
in a 2SAT path is a useful pair.

We separate all three-unit layers into two parts (can be more than two parts, but this does not
affect our algorithm): part 1: each layer is like layer 1 (layer 2); part 2: each layer is like layer 3 (or
layer 4). In this case, #3’s as well as t’s 2SAT paths contains all useful pairs which the 2SAT paths
of each layer’s first two units of part 2 contain. #’s as well as t15’s 2SAT paths contains all useful
pairs which the 2SAT paths of each layer’s first two units of part 1 contain.

For the above exceptional problem, if each 2SAT path of ty and t, contains a part path like a;,
by and each 2SAT path of #, t;, t4 and t5 also contains this part path. We call this the exceptional
problem 1. If this part path is separated into three parts and for each other layer, each unit’s 2SAT
paths contain one of these three parts, we call this the exceptional problem 2.

After we calculated the 2SAT paths of every three-unit layer, in each 2SAT path, any two units
are a useful pair. All other units which are not in useful pairs are temporarily deleted. The excep-
tional case is a very special case. Now we have to solve the exceptional problem 1 and exceptional
problem 2. The condition for an exceptional problem happening is that in each of the three-unit
layers, there is at least one unit which does not destroy all units of the same two-unit layers.

If a unit xin a 3 unit layer does not destroy both units in one two-unit layer, we say that this two-
unit layer is X’s one exceptional layer. For the above example, in addition to the shared exceptional
layers, ty’s as well as t;,’s 2SAT paths may contain some units which f;’s or #3’s 2SAT paths also
contain, but this does not affect our algorithm.

Now we can do the following steps to solve the exceptional problem discussed above:

(1) For each layer of the three-unit layers, we try to choose a unit which has exceptional
layers. We call it a chosen unit. For each of the rest three-unit layers, choose such one
unit which shares the most exceptional layers with former chosen units. We also call this
unit a chosen unit. All chosen units, each of them is in each of the three-unit layers, must
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share some exceptional layers. They are the final exceptional layers which each unit of
the chosen units has. We call these chosen units a chosen unit set. We do not have to
mind whether the units in a chosen unit set destroy each other, due to the reasons: 1) if
the exceptional problems happen, all units in a chosen unit set do not destroy each other
and a chosen unit does not destroy most other units; 2) if in one layer, more than one unit
has the shared exceptional layers, choosing any one does not affect our method (choose
the one which share the most exceptional layers). We may have to get more than one
different chosen unit sets. Considering that we do not have to mind whether the units in
a chosen unit set destroy each other and that for the three-unit layers, all the third units
share the most number of exceptional layers (for some fixed layers), the number of
exceptional layer sets is O(1) and the job to find these layer sets is not hard. The time
for this job is O(m?). We first choose layer 1. Its three units are t;, t, ;. We choose #;
and get t3’s exceptional layers. We temporarily delete such exceptional layers: in one (or
more) three-unit layer, no unit has such exceptional layers. Then for the rest exceptional
layers of t3, each time we add one such layer to try to get a final exceptional layer set. The
layer sets may be more than one but in O(1). For each of such exceptional layers, we only
have to consider O(1) layer sets which may contain it. We do not have to calculate a lot
of combinations. At last, for each chosen unit set (each unit in each three-unit layer, if we
can get their shared exceptional layers), we do the following steps. If we cannot get a long
path, we try other chosen unit sets. If we still cannot get a long path, we try t; and #, in
layer 1 in the same way. For each three-unit layer, we say the chosen unit is the third unit.
Other two units are the first and the second units.

(2) Choose layer 1 of the three-unit layers. Only consider the first and second units in this
layer. Choose another three-unit layer and also only consider the first two units. If they
can share a 2SAT path, we call it together with layer 1 a layer set. We call layer 1 the start
layer of this set. For the layer set (each layer two units) together with all two-unit layers,
we calculate 25AT. We have to get at least one 2SAT path on them. Then, each time we
add one other three-unit layer (only the first two units) to them (also to the layer set if we
successfully get a shared 2SAT path) to calculate 2SAT and try to get at least one 2SAT
path. For the rest three-unit layers which cannot be added into this layer set, i.e., each of
them (only for the first two units) and the layer set cannot share the same one 2SAT path,
we calculate another layer set in the same way. We call this layer set the first kind layer
set. Please note: layers in different layer sets may overlap, but each start layer is a new
layer which is not in former layer sets. For each layer set, find the rest three-unit layers
and temporarily delete the first two units in these layers. We call these layers the second
kind layer set. We put this second layer set (each layer one unit), and the two-unit layers
together to calculate 2SAT. If we cannot get a shared 2SAT path, there is no shared 2SAT
path for this case and we can try other first kind layer sets. If we can get a 2SAT path and
all units in the second layer set (only the third unit) do not destroy each other, do the next
step 3).

(3) Put the layers of this second layer set (each layer one unit, the third one), all other three-
unit layers (each layer two units, the first two units), and the two-unit layers together to
calculate 2SAT.

(4) For the second layer set, we add all other possible three-unit layers (only the third unit)
to this second kind layer set which can share the same one 2SAT path. We call it the
final second kind layer set. Then we put the layers of this final second layer set (each
layer one unit), all other three-unit layers (each layer two units), and the two-unit layers
together to calculate 25AT.
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Now we explain why the above steps can solve the exceptional problem. Units in a first kind
layer set share a 2SAT path. If the number of the rest three-unit layers is 0, the result is enough.
Now suppose it is not 0. If a third unit #; has a 2SAT path p; psps, then for each of other three-unit
layers, case 1: it also has the 2SAT path p; psps; case 2: its three units have the 2SAT paths p; psps,
p1psps and pspsp, respectively and t3°s 2SAT paths also contain p,. p; and p,, ps and p4, ps and pe
are brother part paths; case 3: t3°s 25AT paths do not contain p, but both #;’s and ,’s 2SAT paths
contain p,. t1, t; and 3 are three units in the same layer. This layer also must have the 2SAT paths
p1psps and p; psps. For case 2 and case 3, each layer may have different 2SAT paths, but due to the
above property 1 and property 2, at last, each layer must have the same two or more 2SAT paths.
For the final second layer set, if it is like the case 1, we can get a shared 2SAT path for all the
three-unit layers by step 4). If it is like the case 2, we can get a shared 2SAT path for all the third
units by the above steps. If it is like the case 3, we can get a shared 2SAT path for the first two units
in all 3 unit layers. Or, there is no such a shared 2SAT path due to the exceptional problem. If so
and if part of the final second layer set have another 2SAT path which is like the case 1 and there
is no exceptional problem for this case, then for the case 3, in order to let each layer’s 2SAT paths
contain the same unit pairs and also in order to let the exceptional problem happen, the first unit’s
2SAT paths must contain p; pspes, p2, pa and the second unit’s 2SAT paths must contain p; ps pa, p2,
pe- Suppose part of the final second kind layer set (we call them the part layers) have another 2SAT
path (say h;), and the first or second unit of each other three-unit layer also has the 2SAT path h;.
For the case 3, we have two different kinds. Kind 1: h; contains pg (or ps). If in the part layers, the
first unit’s and the second unit’s 2SAT paths also contain ps (or ps), then when we put the first two
units of the first kind layer set, the third unit of the second kind layer set, and the two-unit layers
together, we can get a long path. If in the part layers, the first unit’s and the second unit’s 2SAT
paths do not contain ps and py, then when we choose p;p,, psps as the exceptional layer set, i.e.,
all third units (different third units, i.e., another case’s third units) have these exceptional layers,
if we put all the first two units (another case’s first two units) and the two-unit layers together
(i.e., for this case, the first kind layer set includes all three-unit layers), we can get a long path.
Kind 2: h; does not contain the whole ps or the whole p; or the whole p,. Suppose h; contains
DPep1Ps2- Pe1 and pg, together is pg. ps; and psy together is ps. If the third units in the part layers
and the first unit in other layers share the 2SAT path h;, then when we choose p; p;, and psps as
the exceptional layer set, if we put all the first two units (another case’s first two units) and the
two-unit layers together, we can get a long path. If in some layers, the first (or second) unit also
shares the final exceptional layers and then the first (or second) unit and the third unit exchange,
this does not affect our method, because we do the step 2), 3), 4). Suppose that for k; layers, at last,
the first (or second) unit and the third unit exchange positions, we call such third units k; layers
wrong third units. All three-unit layers are k layers. For the new first two units, if at most there
are ky (k-ky <k, <k) layers which share another different 2SAT path, then the k; layers wrong third
units must also share this 2SAT path. So we can get a long path by above steps. For a exceptional
layer set, we only have to consider it one time. If in step 1), there are no exceptional layer sets, we
do the step 2), 3), 4), and we still can get a long path.

Please note: by Lemma 1, Lemma 2, Lemma 3 and Corollary 1, if each three-unit layer has one or
more useful 2SAT paths, then for any two three-unit layers, there is at least one unit in each layer
that has the same one 2SAT path and do not destroy each other directly or indirectly. However,
for three or more three-unit layers, there is a special case, as above. Due to the above property 1
and property 2, this is the only one kind of exceptional case. They are not exactly the same, but
they are in this style and we can solve them in the same way. Except for this kind of exceptional
case, if each three-unit layer has one or more useful 25AT paths, then there is at least one unit in

ACM Transactions on Computation Theory, Vol. 13, No. 3, Article 15. Publication date: July 2021.



15:12 L. Du

every layer that has the same one 2SAT path and these units do not destroy each other directly or
indirectly.

If there are no three-unit layers because for all layers we can get a 2SAT path that does not
contain —x and —y, that is, which can contain xand y, the result is correct. If there is only one three-
unit layer, it is obviously also correct. Suppose that there are more than one three-unit layers. In
the algorithm, we first calculate 2SAT on the two-unit layers. Then, we add each three-unit layer
to the bottom of the two-unit layers and calculate the 2SAT, respectively, as stated above.

Foe the proof, we supposed the worst cases. Even if the suppositions do not happen, it still does
not affect our proof.

A unit in a three-unit layer cannot destroy both units in a two-unit layer because, if so, this unit
would not have any 2SAT paths and, thus, we temporarily delete it.

In summary of the above lemmas and corollaries, we can get that the algorithm is correct.

The key for the polynomial is as follows: all possible 2SAT paths may be exponential, but all
possible two-unit combinations are polynomial (O(m?)). We do not have to remember all possi-
ble 2SAT paths but only remember all two-unit contradiction pairs, including direct contradiction
pairs, indirect contradiction pairs, and additional contradiction pairs. To calculate a 2SAT path,
the time is O(m). The problem is that when calculating 2SAT paths for one three-unit layer, we
may get new additional contradiction pairs (every such unit pair cannot be in the same useful
2SAT path). Then, we have to calculate former three-unit layers again and do not let each of
these new contradiction pairs in the same useful 2SAT path. Thus, for each unit in three-unit
layers, we consider calculating its 2SAT paths O(m) times on average. Note that for each unit
in three-unit layers, we may calculate more than one 2SAT path containing different unit pairs.
However, on average, we still think that the time to calculate each unit’s 2SAT paths each time is
O(m).

In the same way, we also calculate whether x destroys y when we add the unit a;12, @;413. For
each of 9 kinds of long paths, we calculate each unit pair and remember whether there is such a
path of this kind containing the unit pair.

Note that in this algorithm and proof, the indirect destroying is based on the old checking tree,
that is, before the unit a;;1; is added. This is also for the concept long unit path.

2.2 Algorithm 2: Calculating New Utterly Destroyed Units

Let uy, upus be three brother units and are not utterly destroyed units. u; is the variable —v. aj;1;
is the variable v and is the new added unit. If a unit is destroyed by both u; and us, then this unit
is a new utterly destroyed unit for a;;1;. If more than one layer contains the variable —v because
after Algorithm 1, we have got all of the new contradiction pairs, each unit that is destroyed by
both two units (except the —v) in such a layer is a new utterly destroyed unit.

In this way, we also calculate new utterly destroyed units for a;412 and for g;;13. Only new utterly
destroyed units for a;;1; and for a;,12, ;413 are the final new utterly destroyed units (for this new
added layer), but we calculate and remember utterly destroyed units for each of 9 kinds of long
paths, respectively.

After we added the units a1, ama, ams and calculated all utterly destroyed units and all con-
tradiction unit pairs, if some units are not utterly destroyed units, then there is at least a long path
from the first layer to the mth layer. Otherwise, there is no such a path.

2.3 Algorithm 3: Calculating A Long Unit Path From The First Layer To The Mth Layer

For 9 kinds of long paths, we try to calculate one. For any long path of 9 kinds, if we proved that
it exists, we can calculate such a long path. Delete all utterly destroyed units for this long path.
Then, each unit can be in some one long path. We first choose any one unit from the first layer and
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it is the root of the long unit path to calculate. We delete its brother units in the first layer. Then,
from the second layer to the lowest layer, we delete all units that are destroyed by the unit we keep
in the first layer. Then, we calculate all new contradiction unit pairs due to deleting the brother
units by calling Algorithm 1. In each layer, there is at least one unit; we continue for the second
layer. We choose one unit from the second layer and delete its brother units in this layer. We then
delete all units destroyed by the unit that we keep in the second layer. Then, we calculate all new
contradiction unit pairs due to deleting the brother units by calling Algorithm 1, continuing for
the third layer, and so on. Finally, we can get a long unit path from the first layer to the lowest
layer.

THEOREM 1. The algorithm can solve the 3SAT in O(m°).

Proor. Suppose that the number of clauses is m. All units are 3m. The main time is to calculate
the new contradiction unit pairs. For each O(m?) unit pair, for each unit in three-unit layers, we
have to calculate O(m) times 2SAT as stated above. The time for each 2SAT is O(m). The units
in three-unit layers is O(m). Thus, the time for each unit pair, that is, for Algorithm 1, is O(m) *
O(m) * O(m) = O(m3). We have to do this for each of 9 kinds of long paths. The time for all pairs is
O(m?) * O(m®) * 9 = O(m®). There are O(m) new added units in turn. The time for the Algorithm
3 is the same. Thus, the entire time complexity is O(m®) * O(m) = O(m°). m]
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