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Introduction 

• Objective:  To provide hardware support for floating point 

arithmetic.   To understand how to represent floating point 

numbers in the computer and how to perform arithmetic with 

them.  Also to learn how to use floating point arithmetic in 

MIPS. 

 

• Approximate arithmetic 

– Finite Range 

– Limited Precision 

 

• Topics 

– IEEE format for single and double precision floating point numbers 

– Floating point addition and multiplication 

– Support for floating point computation in MIPS 
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Distribution of Floating Point Numbers 

• 3 bit mantissa 

• exponent {-1,0,1} 

e = -1 e = 0 e = 1

1.00 X 2 (̂-1) = 1/2 1.00 X 2 0̂ = 1 1.00 X 2 1̂ = 2

1.01 X 2 (̂-1) = 5/8 1.01 X 2 0̂ = 5/4 1.01 X 2 1̂ = 5/2

1.10 X 2 (̂-1) = 3/4 1.10 X 2 0̂ = 3/2 1.10 X 2 1̂= 3

1.11 X 2 (̂-1) = 7/8 1.11 X 2 0̂ = 7/4 1.11 X 2 1̂ = 7/2

0 1 2 3 
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Floating Point 

• An IEEE floating point representation consists of 

– A Sign Bit (no surprise) 

– An Exponent (“times 2 to the what?”) 

– Mantissa (“Significand”), which is assumed to be 1.xxxxx (thus, one 

bit of the mantissa is implied as 1)   

– This is called a normalized representation 

• So a mantissa = 0 really is interpreted to be 1.0, and a 

mantissa of all 1111 is interpreted to be 1.1111 

• Special cases are used to represent denormalized 

mantissas (true mantissa = 0), NaN, etc., as will be 

discussed. 
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Floating Point Standard 

• Defined by IEEE Std 754-1985 

• Developed in response to divergence of representations 

– Portability issues for scientific code 

• Now almost universally adopted 

• Two representations 

– Single precision (32-bit) 

– Double precision (64-bit)  
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IEEE Floating-Point Format 

• S: sign bit (0  non-negative, 1  negative) 

• Normalize significand: 1.0 ≤ |significand| < 2.0 

– Always has a leading pre-binary-point 1 bit, so no need to 
represent it explicitly (hidden bit) 

– Significand is Fraction with the “1.” restored 

• Exponent: excess representation: actual exponent + Bias 

– Ensures exponent is unsigned 

– Single: Bias = 127; Double: Bias = 1203 

S Exponent Fraction 

single: 8 bits 
double: 11 bits 

single: 23 bits 
double: 52 bits 

Bias)(ExponentS 2Fraction)(11)(x 
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Single-Precision Range 

• Exponents 00000000 and 11111111 reserved 

• Smallest value 

– Exponent: 00000001 

 actual exponent = 1 – 127 = –126 

– Fraction: 000…00  significand = 1.0 

– ±1.0 × 2–126 ≈ ±1.2 × 10–38 

• Largest value 

– exponent: 11111110 

 actual exponent = 254 – 127 = +127 

– Fraction: 111…11  significand ≈ 2.0 

– ±2.0 × 2+127 ≈ ±3.4 × 10+38 
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Double-Precision Range 

• Exponents 0000…00 and 1111…11 reserved 

• Smallest value 

– Exponent: 00000000001 

 actual exponent = 1 – 1023 = –1022 

– Fraction: 000…00  significand = 1.0 

– ±1.0 × 2–1022 ≈ ±2.2 × 10–308 

• Largest value 

– Exponent: 11111111110 

 actual exponent = 2046 – 1023 = +1023 

– Fraction: 111…11  significand ≈ 2.0 

– ±2.0 × 2+1023 ≈ ±1.8 × 10+308 
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Representation of Floating Point 

Numbers 

• IEEE 754 single precision 

31 30 23 22 0 

Sign Biased exponent Normalized Mantissa (implicit 24th bit = 1) 

(-1)s  F  2E-127 

Exponent Mantissa Object Represented

0 0 0

0 non-zero denormalized

1-254 anything FP number

255 0 pm infinity

255 non-zero NaN



Lec 14 Systems Architecture 10 

Why biased exponent? 

• For faster comparisons (for sorting, etc.), allow integer 

comparisons of floating point numbers: 

• Unbiased exponent: 

 

 

• Biased exponent: 

0 1111 1111 000 0000 0000 0000 0000 0000 

0 0000 0001 000 0000 0000 0000 0000 0000 
1/2 
2 

0 0111 1110 000 0000 0000 0000 0000 0000 

0 1000 0000 000 0000 0000 0000 0000 0000 
1/2 
2 
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Basic Technique 

• Represent the decimal in the form +/- 1.xxxb x 2y 

• And “fill in the fields” 

– Remember biased exponent and implicit “1.” mantissa! 

• Examples: 

– 0.0: 0 00000000 00000000000000000000000 

– 1.0 (1.0 x 2 0̂): 0 01111111 00000000000000000000000 

– 0.5 (0.1 binary = 1.0 x 2 -̂1): 0 01111110 00000000000000000000000 

– 0.75 (0.11 binary = 1.1 x 2 -̂1): 0 01111110 10000000000000000000000 

– 3.0 (11 binary = 1.1*2 1̂): 0 10000000 10000000000000000000000 

– -0.375 (-0.011 binary = -1.1*2 -̂2): 1 01111101 10000000000000000000000 

– 1 10000011 01000000000000000000000 = - 1.01 * 2 4̂ = -20.0 

http://www.math-cs.gordon.edu/courses/cs311/lectures-2003/binary.html 

Copyright ©2003 - Russell C. Bjork 
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Basic Technique 

• One can compute the mantissa just similar to the way one would 

convert decimal whole numbers to binary.   

• Take the decimal and repeatedly multiply the fractional 

component by 2.  The whole number portion is the next binary 

bit. 

• For whole numbers, append the binary whole number to the 

mantissa and shift the exponent until the mantissa is in 

normalized form. 

http://www.newton.dep.anl.gov/newton/askasci/1995/math/MATH065.HTM 
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Floating-Point Example 

• Represent –0.75 

– –0.75 = (–1)1 × 1.12 × 2–1 

– S = 1 

– Fraction = 1000…002 

– Exponent = –1 + Bias 

• Single: –1 + 127 = 126 = 011111102 

• Double: –1 + 1023 = 1022 = 011111111102 

• Single: 1011111101000…00 

• Double: 1011111111101000…00 
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Floating-Point Example 

• What number is represented by the single-precision float 

 11000000101000…00 

– S = 1 

– Fraction = 01000…002 

– Fxponent = 100000012 = 129 

• x = (–1)1 × (1 + 012) × 2(129 – 127) 

 = (–1) × 1.25 × 22 

 = –5.0 
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Representation of Floating Point 

Numbers 

• IEEE 754 double precision 

31 30 20 19 0 

Sign Biased exponent Normalized Mantissa (implicit 53rd bit) 

(-1)s  F  2E-1023 

Exponent Mantissa Object Represented

0 0 0

0 non-zero denormalized

1-2046 anything FP number

2047 0 pm infinity

2047 non-zero NaN
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Floating Point Arithmetic 

• fl(x) = nearest floating point number to x 

 

• Relative error (precision = s digits) 

 

–|x - fl(x)|/|x|  1/21-s   for  = 2, 2-s 

 

• Arithmetic 

–x  y = fl(x+y) = (x + y)(1 +   )      for     < u 

–x   y = fl(x  y)(1 +   )                   for     < u 

 

ULP—Unit in the Last Place is the smallest possible increment 

or decrement that can be made using the machine's FP 

arithmetic.  
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Floating-Point Precision 

• Relative precision 

– all fraction bits are significant 

– Single: approx 2–23 

• Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal digits of precision 

– Double: approx 2–52 

• Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal digits of precision 
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Is FP addition associative? 

• Associativity law for addition: a + (b + c) = (a + b) + c 

• Let a = – 2.7 x 1023, b = 2.7 x 1023, and c = 1.0 

• a + (b + c) = – 2.7 x 1023 + ( 2.7 x 1023 + 1.0 ) = – 2.7 x 1023 + 

2.7 x 1023 = 0.0 

• (a + b) + c = ( – 2.7 x 1023 + 2.7 x 1023  ) + 1.0  = 0.0 + 1.0 = 1.0 

• Beware – Floating Point addition not associative! 

• The result is approximate… 

• Why the smaller number disappeared? 
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Floating point addition 

•   

S t i l l  n o r m a l i z e d ?

4 .  R o u n d  t h e  s i g n i f i c a n d  t o  t h e  a p p r o p r i a t e

n u m b e r  o f  b i t s

Y e sO v e r f l o w  o r

u n d e r f l o w ?

S t a r t

N o

Y e s

D o n e

1 .   C o m p a r e  t h e  e x p o n e n t s  o f  t h e  t w o  n u m b e r s .

S h i f t  t h e  s m a l l e r  n u m b e r  t o  t h e  r i g h t  u n t i l  i t s

e x p o n e n t  w o u l d  m a t c h  t h e  l a r g e r  e x p o n e n t

2 .  A d d  t h e  s i g n i f i c a n d s

3 .  N o r m a l i z e  t h e  s u m ,  e i t h e r  s h i f t i n g  r i g h t  a n d

i n c r e m e n t i n g  t h e  e x p o n e n t  o r  s h i f t i n g  l e f t

a n d  d e c r e m e n t i n g  t h e  e x p o n e n t

N o E x c e p t i o n

Small ALU

Exponent

difference

Control

ExponentSign Fraction

Big ALU

ExponentSign Fraction

0 1 0 1 0 1

Shift right

0 1 0 1

Increment or

decrement
Shift left or right

Rounding hardware

ExponentSign Fraction
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Floating-Point Addition 

• Consider a 4-digit decimal example 

– 9.999 × 101 + 1.610 × 10–1 

• 1. Align decimal points 

– Shift number with smaller exponent 

– 9.999 × 101 + 0.016 × 101 

• 2. Add significands 

– 9.999 × 101 + 0.016 × 101 = 10.015 × 101 

• 3. Normalize result & check for 
over/underflow 

– 1.0015 × 102 

• 4. Round and renormalize if necessary 
– 1.002 × 102 
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Floating-Point Addition 

• Now consider a 4-digit binary example 

– 1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375) 

• 1. Align binary points 

– Shift number with smaller exponent 

– 1.0002 × 2–1 + –0.1112 × 2–1 

• 2. Add significands 

– 1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1 

• 3. Normalize result & check for 
over/underflow 

– 1.0002 × 2–4, with no over/underflow 

• 4. Round and renormalize if necessary 
– 1.0002 × 2–4 (no change)  = 0.0625 
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FP Adder Hardware 

• Much more complex than integer adder 

• Doing it in one clock cycle would take too long 

– Much longer than integer operations 

– Slower clock would penalize all instructions 

• FP adder usually takes several cycles 

– Can be pipelined 
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FP Adder Hardware 

Step 1 

Step 2 

Step 3 

Step 4 
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Floating Point Multiplication Algorithm 
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FP Arithmetic Hardware 

• FP multiplier is of similar complexity to FP adder 

– But uses a multiplier for significands instead of an adder 

• FP arithmetic hardware usually does 

– Addition, subtraction, multiplication, division, reciprocal, square-root 

– FP  integer conversion 

• Operations usually takes several cycles 

– Can be pipelined 
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FP Instructions in MIPS 

• FP hardware is coprocessor 1 
– Adjunct processor that extends the ISA 

• Separate FP registers 
– 32 single-precision: $f0, $f1, … $f31 

– Paired for double-precision: $f0/$f1, $f2/$f3, … 
• Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s 

• FP instructions operate only on FP registers 
– Programs generally don’t do integer ops on FP 

data, or vice versa 

– More registers with minimal code-size impact 

• FP load and store instructions 
– lwc1, ldc1, swc1, sdc1 

• e.g., ldc1 $f8, 32($sp) 
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FP Instructions in MIPS 

• Single-precision arithmetic 
– add.s, sub.s, mul.s, div.s 

• e.g., add.s $f0, $f1, $f6 

• Double-precision arithmetic 
– add.d, sub.d, mul.d, div.d 

• e.g., mul.d $f4, $f4, $f6 

• Single- and double-precision comparison 
– c.xx.s, c.xx.d (xx is eq, lt, le, …) 

– Sets or clears FP condition-code bit 
• e.g. c.lt.s $f3, $f4 

• Branch on FP condition code true or false 
– bc1t, bc1f 

• e.g., bc1t TargetLabel 
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FP Example: °F to °C 

• C code: 
 float f2c (float fahr) { 
  return ((5.0/9.0)*(fahr - 32.0)); 
} 

– fahr in $f12, result in $f0, literals in global 
memory space 

• Compiled MIPS code: 
 f2c: lwc1  $f16, const5($gp) 
     lwc2  $f18, const9($gp) 
     div.s $f16, $f16, $f18 
     lwc1  $f18, const32($gp) 
     sub.s $f18, $f12, $f18 
     mul.s $f0,  $f16, $f18 
     jr    $ra 
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Rounding 

• Guard and round digits and sticky bit 

 

– When computing result, assume there are several extra digits available 

for shifting and computation. This improves accuracy of computation. 

 

– Guard digit: first extra digit/bit to the right of mantissa -- used for 

rounding addition results 

 

– Round digit: second extra digit/bit to the right of mantissa -- used for 

rounding multiplication results 

 

– Sticky bit:  third extra digit/bit to the right of mantissa – used for 

resolving ties such as 0.50...00 vs. 0.50...01 
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Rounding examples 

 

• An example without guard and round digits 

– Add 9.76 x 1025 and 2.59 x 1024 assuming 3 digit mantissa 

• Shift mantissa of the smaller number to the right: 0.25 x 1025  

• Add mantissas: 10.01x 1025  

• Check and normalize mantissa if necessary: 1.00x 1026  

 

 

• An example with guard and round digits 

– Add 9.76 x 1025 and 2.59 x 1024 assuming 3 digit mantissa 

• Internal registers have extra two digits: 9.7600 x 1025 and 2.5900 x 1024  

• Shift mantissa of the smaller number to the right: 0.2590 x 1025  

• Add mantissas: 10.0190 x 1025  

• Check and normalize mantissa if necessary: 1.0019 x 1026  

• Round the result: 1.00 x 1026  
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Rounding examples 

 

• An example without guard and round digits 

– Add 9.78 x 1025 and 8.79 x 1024 assuming 3 digit mantissa 

• Shift mantissa of the smaller number to the right: 0.87 x 1025  

• Add mantissas: 10.65 x 1025  

• Normalize mantissa if necessary: 1.06 x 1026  

 

 

• An example with guard and round digits 

– Add 9.78 x 1025 and 8.79 x 1024 assuming 3 digit mantissa 

• Internal registers have extra two digits: 9.7800 x 1025 and 8.7900 x 1024  

• Shift mantissa of the smaller number to the right: 0.8790 x 1025  

• Add mantissas (note extra digit on the left): 10.6590 x 1025  

• Check and normalize mantissa if necessary: 1.0659 x 1026  

• Round the result: 1.07 x 1026  
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IEEE Rounding Modes 

1. Round toward – Infinity: always round toward the smaller number 

2. Round toward + Infinity: always round toward the larger number  

3. Round to Zero: always round toward the smallest absolute (truncate)  

4. Round toward Nearest Even: always round so that least significant bit 
(lsb) is zero  

      1.40 1.60 1.50 2.50 –1.50 

Zero 1.00 2.00 1.00 2.00 –1.00 

 1.00 2.00 1.00 2.00 –2.00 

 1.00 2.00 2.00 3.00 –1.00 

Nearest Even (default)  

            1.00 2.00 2.00 2.00 –2.00 
 

• When rounding a binary fraction, the least significant digit of rounded 
result will be either 1 or 0. Nearest even mode always rounds the number 
so that the lsb is 0. Hence, the name. (If we omit the binary point, the 
rounded number would be even.)  

• It can be shown that if we assume uniform distribution of digits, rounding 
to nearest mode tends to have mean error = 0. 
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FP Instructions in MIPS 

• Floating point operations are slower than integer operations 

• Data is rarely converted from integers to float within the same 
procedure 

• 1980’s solution – place FP processing unit in a separate chip 

• Today’s solution – imbed FP processing unit in processor chip 

• Co-processor 1 features: 

– Contains 32 single precision floating point registers: $f0, $f1, … $f31 

– These registers can also act as 16 double precision registers:  
$f0/$f1, $f2/$f3, … , $f30/$f31 (only the first one is specified in the instructions) 

– Uses special floating point instructions, which are similar (in format) to integer 
instructions but have .s or .d attached to signify that they work on fp numbers 

– Several special instructions to move between “regular” registers and the co-
processor registers 
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FP Instructions in MIPS 

• lwc1 / swc1 – load/store word coprocessor 1 

• Move instructions (between processors) 

mfc1  rt, rd      Move floating point register rd to CPU register rt 

mtc1  rd, rt      Move CPU register rt to floating point register rd 

mfc1.d  rdest, frsrc1  
            Move frsrc1 & frsrc1 + 1 to regs rdest & rdest + 1 

• Single and double precision arithmetic instructions 

Single add.s,  sub.s,  mul.s,  div.s,  c.lt.s  

Double add.d,  sub.d,  mul.d,  div.d,  c.lt.d  

 

• Examples:      add.s $f0, $f1, $f2         sub.d $f0, $f2, $f4 


