These functions are described in more detail in the PostgreSQL docs.
Примечание
All functions come without default aliases, so you must explicitly provide one. For example:
>>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
{'arr': [0, 1, 2]}
Returns a list of values, including nulls, concatenated into an array.
Returns an int of the bitwise AND of all non-null input values, or None if all values are null.
Returns an int of the bitwise OR of all non-null input values, or None if all values are null.
Returns True, if all input values are true, None if all values are null or if there are no values, otherwise False .
The arguments y and x for all these functions can be the name of a field or an expression returning a numeric data. Both are required.
Returns the correlation coefficient as a float, or None if there aren’t any matching rows.
Returns the population covariance as a float, or None if there aren’t any matching rows.
Has one optional argument:
By default CovarPop returns the general population covariance. However, if sample=True, the return value will be the sample population covariance.
Returns the average of the independent variable (sum(x)/N) as a float, or None if there aren’t any matching rows.
Returns the average of the independent variable (sum(y)/N) as a float, or None if there aren’t any matching rows.
Returns an int of the number of input rows in which both expressions are not null.
Returns the y-intercept of the least-squares-fit linear equation determined by the (x, y) pairs as a float, or None if there aren’t any matching rows.
Returns the square of the correlation coefficient as a float, or None if there aren’t any matching rows.
Returns the slope of the least-squares-fit linear equation determined by the (x, y) pairs as a float, or None if there aren’t any matching rows.
Returns sum(x^2) - sum(x)^2/N (“sum of squares” of the independent variable) as a float, or None if there aren’t any matching rows.
We will use this example table:
| FIELD1 | FIELD2 | FIELD3 |
|--------|--------|--------|
| foo | 1 | 13 |
| bar | 2 | (null) |
| test | 3 | 13 |
Here’s some examples of some of the general-purpose aggregation functions:
>>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
{'result': 'foo;bar;test'}
>>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
{'result': [1, 2, 3]}
>>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
{'result': ['foo', 'bar', 'test']}
The next example shows the usage of statistical aggregate functions. The underlying math will be not described (you can read about this, for example, at wikipedia):
>>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
{'count': 2}
>>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
... avgy=RegrAvgY(y='field3', x='field2'))
{'avgx': 2, 'avgy': 13}
Mar 31, 2016